Hussain, A., 1983, “Coherent Structures-Reality and Myth,” Phys. Fluids, 26 , pp. 2816–2850.

[CrossRef]Bevilaqua, P. M., and Lykoudis, P., 1978, “Turbulence Memory in Self-Preserving Wakes,” J. Fluid Mech., 89 , pp. 589–606.

[CrossRef]Sreenivasan, K. R., and Narasimha, R., 1982, “Equilibrium Parameters for Two-Dimensional Turbulent Wakes,” Trans. ASME J. Fluids Eng., 104 , pp. 167–169.

[CrossRef]Wygnanski, I., Champagne, F., and Marasli, B., 1986, “On the Large-Scale Structures in Two-Dimensional Small Deficit, Turbulent Wakes,” J. Fluid Mech., 168 , pp. 31–71.

[CrossRef]Townsend, A., 1976, "*Shear Flow Turbulence*", Cambridge University Press, Cambridge, UK.

Tennekes, H., and Lumley, J., 1972, "*A First Course in Turbulence*", MIT Press, Cambridge, MA.

George, W., 1989, “The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures,” "*Advances in Turbulence*", W.George and R.Arndt, eds., Hemisphere, New York, pp. 1–41.

Taulbee, D., 1989, “Reynolds Stress Models Applied to Turbulent Jets,” "*Advances in Turbulence*", W.George and R.Arndt, eds., Hemisphere, New York, pp. 29–73.

George,W., and Arndt, R., 1989, "*Advances in Turbulence*", Hemisphere, New York.

George, W. K., 1995, “Some New Ideas for Similarity of Turbulent Shear Flows,” "*Proceedings of the Symposium on Turbulence, Heat and Mass Transfer*", Lisbon, Portugal, Aug. 9–12 1994, Hanjalic and Pereira, eds., Begell House, pp. 24–49.

George, W. K., 1992, “The Decay of Homogeneous Isotropic Turbulence,” Phys. Fluids A, 4 (7), pp. 1492–1509.

[CrossRef]George, W., 1990, “Self-Preservation of Temperature Fluctuations in Isotropic Turbulence,” "*Studies in Turbulence*", C.G. S. T. B.Gatski, S.Sarkar, eds., Springer Verlag, Berlin, pp. 514–427.

George, W. K., and Gibson, M. M., 1992, “The Self-Preservation of Homogeneous Shear Flow Turbulence,” Exp. Fluids, 13 , pp. 229–238.

[CrossRef]Comte-Bellot, G., and Corrsin, S., 1966, “The use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence,” J. Fluid Mech., 25 , pp. 657–682.

[CrossRef]Comte-Bellot, G., and Corrsin, S., 1971, “Simple Eulerian Time Correlation of Full- and Narrow-Band Velocity Signals in Grid-Generated, ‘Isotropic’ Turbulence,” J. Fluid Mech., 48 , pp. 273–337.

[CrossRef]Warhaft, Z., and Lumley, J., 1978, “An Experimental Study of Temperature Fluctuations in Grid-Generated Turbulence,” J. Fluid Mech., 88 , pp. 659–684.

[CrossRef]Rohr, J., Itsweire, E., Helland, K., and Van Atta, C., 1988, “An Investigation of the Growth of Turbulence in a Uniform Mean- Shear Flow,” J. Fluid Mech., 187 , pp. 1–33.

[CrossRef]Gibson, M., and Kanellopoulos, V., 1988, “Turbulence Measurements in a Nearly Homogeneous Shear Flow,” "*Transport Phenomena in Turbulent Flows*", M.Hirat and N.Kasgi eds., pp. 17–28.

George, W. K., and Castillo, L., 1997, “Zero-Pressure Gradient Turbulent Boundary Layer,” Appl. Mech. Rev., 50 (12), pp. 689–729.

[CrossRef]Castillo, L., and George, W. K., 2001, “Similarity Analysis of Turbulent Boundary Layers with Pressure Gradient: Outer Flow,” AIAA J., 39 (1), pp. 41–47.

[CrossRef]Cannon, S., Champagne, F., and Glezer, A., 1993, “Observations of Large-Scale Structure in Wakes Behind Axisymmetric Bodies,” Exp. Fluids, 14 , pp. 447–450.

[CrossRef]Zhou, Y., and Antonia, R., 1994, “Effect of Initial Conditions on Characteristics of Turbulent Far Wake,” JSME Int. J., Ser. B, 37 (4), pp. 718–725.

[CrossRef]Zhou, Y., and Antonia, R., 1995, “Memory Effects in a Turbulent Plane Wake,” Exp. Fluids, 19 (2), pp. 112–120.

[CrossRef]Boersma, G., Brethouwer, G., and Nieuwstadt, F. T. M., 1998, “A Numerical Investigation of the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet,” Phys. Fluids A, 10 (4), pp. 899–909.

[CrossRef]Rinoshika, A., and Zhou, Y., 2007, “Effects of Initial Conditions on Wavelet-Decomposed Structures in a Turbulent Far Wake,” Int. J. Heat Fluid Flow, 28 , pp. 948–962.

[CrossRef]Moser, R. D., Rogers, M. M., and Ewing, D. W., 1998, “Self-Similarity of Time-Evolving Plane Wakes,” J. Fluid Mech., 367 , pp. 255–289.

[CrossRef]Ewing, D., George, W., Rogers, M., and Moser, R., 2007, “Two-Point Similarity in Temporally Evolving Plane Wakes,” J. Fluid Mech., 577 , pp. 287–307.

[CrossRef]Rogers, M. M., 2005, “Turbulent Plane Wakes Subjected to Successive Strains,” J. Fluid Mech., 535 , pp. 215–243.

[CrossRef]Ghosal, S., and Rogers, M. M., 1997, “A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large Eddy Simulation,” Phys. Fluids A, 9 (6), pp. 1729–1739.

[CrossRef]Cannon, S., 1991, “Large-Scale Structures and the Spatial Evolution of Wakes Behind Axisymmetric Bluff Bodies,” Ph.D. Thesis, University of Arizona, Tucson, AZ.

Johansson, P. B. V., George, W. K., and Gourlay, M. J., 2003, “Equilibrium Similarity, Effects of Initial Conditions and Local Reynolds Number on the Axisymmetric Wake,” Phys. Fluids A, 15 (3), pp. 603–617.

[CrossRef]Johansson, P. B. V., and George, W. K., 2006, “The Far Downstream Evolution of the High Reynolds Number Axisymmetric Wake Behind a Disk. Part 1. Single Point Statistics,” J.Fluid Mech., 555 , pp. 363–385.

[CrossRef]Gourlay, M. J., Arendt, S., Fritts, D. C., and Werne, J., 2001, “Numerical Modeling of Initially Turbulent Wakes With Net Momentum,” Phys. Fluids A, 13 , pp. 3783–3802.

[CrossRef]Panchepakesan, N. R., and Lumley, J., 1993, “Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part 1. 34 Air Jet,” J. Fluid Mech., 246 , p. 197–223.

[CrossRef]Hussein, H., Capp, S., and George, W. K., 1994, “Velocity Measurements in a High Reynolds Number, Momentum Conserving Axisymmetric Turbulent Jet,” J. Fluid Mech., 258 , pp. 31–75.

[CrossRef]Cater, J., and Soria, J., 2002, “The Evolution of Round Zero-Net-Mass-Flux Jets,” J. Fluid Mech., 472 , pp. 167–200.

[CrossRef]Parekh, D., Leonard, A., and Reynolds, W., 1988, “Bifurcating Jets at High Reynolds Numbers,” Technical Report: Deptartment of Mechanical Engineering, Stanford University, Palo Alto, CA.

Russ, S., and Strykowski, P., 1993, “Turbulent Structure and Entrainment in Heated Jets: The Effect of Initial Conditions,” Phys. Fluids A, 12 (12), pp. 3216–3225.

[CrossRef]Grinstein, F., 2001, “Vortex Dynamics and Entrainment in Rectangular Free Jets,” J. Fluid Mech., 437 , pp. 69–101.

[CrossRef]Grinstein, F. F., Glauser, M. M., and George, W. K., 2001, “Vorticity in Jets,” "*Fluid Vortices*", S.Greene, ed., Kluwer, Norwell, MA, pp. 65–88.

Gilchrist, R., and Naughton, J., 2005, “Experimental Study of Incompressible Jets With Different Initial Swirl Distributions: Mean Results,” AIAA J., 43 (4), pp. 741–751.

[CrossRef]Fukushima, C., Aanen, L., and Westerweel, J., 2000, “Investigation of the Mixing Process in an Axisymmetric Turbulent Jet using PIV and LIF,” "*Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics*", Lisbon, Portugal.

Ewing, D., Frohnapfel, B., George, W., Pedersen, J., and Westerweel, J., 2007, “Two-Point Similarity in the Round Jet,” J. Fluid Mech., 577 , pp. 309–330.

[CrossRef]Mi, J., Nobis, D. S., and Nathan, G. J., 2001, “Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet,” J. Fluid Mech., 432 , pp. 91–125.

Xu, G., and Antonia, R., 2002, “Effect of Different Initial Conditions on a Turbulent Round Free Jet,” Exp. Fluids, 33 (5), pp. 677–683.

[CrossRef]Xu, G., and Antonia, R., 2002, “Effect of Initial Conditions on the Temperature Field of a Turbulent Round Free Jet,” Int. Commun. Heat Mas Transfer, 29 (8), pp. 1057–1068.

[CrossRef]Burattini, P., and Djendidi, L., 2004, “Velocity and Passive Scalar Characteristics in a Round Jet With Grids at the Nozzle Exit,” Flow, Turbul. Combust., 72 , pp. 199–218.

[CrossRef]Burattini, P., and Antonia, R., 2005, “Similarity in the Far Field of a Turbulent Round Jet,” Phys. Fluids, 17 , p. 025101.

[CrossRef]Ferdman, E., Otugen, M. V., and Kim, S., 2000, “Effect of Initial Velocity Profile on the Development of Round Jets,” J. Propul. Power, 16 , pp. 676–686.

[CrossRef]George, W., 1990, “Governing Equations, Experiments, and the Experimentalist,” J. Exp. Therm. Fluid Sci., 3 , pp. 557–566.

[CrossRef]Shiri, A., George, W., and Naughton, J., 2006, “An Experimental Study of the Far-Field of Incompressible Swirling Jets,” AIAA J., 46 (8), pp. 2002–2009.

[CrossRef]Morton, B., 1959, “Forced Plumes,” J. Fluid Mech., 2 , pp. 151–163.

[CrossRef]Kotsovinos, N., and List, E., 1977, “Turbulent Buoyant Jet. Part 1. Integral Properties,” J. Fluid Mech., 81 , pp. 25–44.

[CrossRef]Baker, C. B. T. D., and George, W., 1982, “An Analysis of Buoyant Jet Heat Transfer,” "*Proceedings of the 7th International Heat Transfer Conference*", Munich, Germany.

Shabbir, A., and George, W., 1993, “Experiments on a Round Turbulent Buoyant Plume,” J. Fluid Mech., 275 , pp. 1–32.

[CrossRef]Ewing, D., 1999, “Decay of Round Turbulent Jets With Swirl,” "*Proceedings of the 4th International Symposium on Engineering Turbulence Modeling and Experiments*", Elsvier, Amsterdam.

Chigier, N., and Chervinsky, A., 1967, “Experimental Investigation of Swriling Vortex Motion in Jets,” Trans. ASME J. Appl. Mech., 34 , pp. 443–451.

[CrossRef]Farokhi, S., Taghavi, R., and Rice, E., 1989, “Effect of Initial Swirl Distribution on the Evolution of a Turbulent Jet,” AIAA J., 27 (6), pp. 700–706.

[CrossRef]Shiri, A. F., George, W. K., and Toutiaei, S., 2007, “Evaluation of Closure Hypotheses Using Recent Experimental Data on the Similarity Region of Swirling Jet Flows,” "*Proceedings of 4th Ankara International Aerospace Conference*", METU Turkey, Ankara, Sept. 10–12, Paper No. AIAC-2007-051.

Shiri, A. F., Toutiaei, S., and George, W. K., 2007, “Turbulent Flow Structure in the Similarity Region of a Swirling Jet,” "*Proceedings of 11th EUROMECH European Turbulence Conference*", Porto, Portugal, Jun. 25–28, pp. 471–473.

Bremhorst, K., and Hollis, P., 1990, “Velocity Field of an Axisymmetric Pulsed, Subsonic Air Jet,” AIAA J., 28 , pp. 2043–2049.

[CrossRef]Batchelor, G. K., and Townsend, A. A., 1947, “Decay of Vorticity in Isotropic Turbulence,” Proc. R. Soc. London Ser. A, 190 (1023), pp. 534–550.

[CrossRef]von Kármán, T., and Howarth, L., 1938, “On the Statistical Theory of Isotropic Turbulence,” Proc. R. Soc. London Ser. A, 164 (917), pp. 192–215.

[CrossRef]Kistler, A., and Vrebalovich, T., 1966, “Grid Turbulence at Large Reynolds Number,” J. Fluid Mech., 26 , pp. 37–47.

[CrossRef]Reynolds, W., 1976, “Computation of Turbulent Flows,” Ann. Rev. Fluid Mech., 8 , pp. 183–208.

[CrossRef]Batchelor, G., 1953, "*Homogeneous Turbulence*", Cambridge University Press, Cambridge, UK.

Monin, Y., and Yaglom, Y., 1972, "*Statistical Fluid Mechanics, Vol II*", MIT Press, Cambridge, MA.

Yeung, P., Brasseur, J., and Wang, Q., 1995, “Dynamics of Direct Large-Small Scale Couplings in Coherently Forced Turbulence: Concurrent Physical- and Fourier-Space Views,” J. Fluid Mech., 283 (4), pp. 43–95.

[CrossRef]Citriniti, J. H., and George, W. K., 1997, “The Reduction of Spatial Aliasing by Long Hot-Wire Anemometer Probes,” Exp. Fluids, 23 , pp. 217–224.

[CrossRef]Wang, H., and George, W. K., 2002, “The Integral Scale in Homogeneous Isotropic Turbulence,” J. Fluid Mech., 459 , pp. 429–443.

[CrossRef]Batchelor, G., 1948, “Energy Decay and Self-Preserving Correlation Functions in Isotropic Turbulence,” Q. Appl. Math., 6 , pp. 97–116.

Batchelor, G., and Townsend, A., 1948, “Decay of Isotropic Turbulence in the Initial Period,” Proc. R. Soc. London Ser. A, 193 , pp. 539–558.

[CrossRef]Mills, R., Kistler, A., O’Brien, V., and Corrsin, S., 1958, “Turbulence and Temperature Fluctuations behind a Heated Grid,” Johns Hopkins University, NACA Tech. Note No. 4288.

Frenkiel, F. N., and Klebanoff, P., 1971, “Statistical Properties of Velocity Derivatives in a Turbulent Field,” J. Fluid Mech., 48 , pp. 183–208.

[CrossRef]Bennett, J., and Corrsin, S., 1978, “Small Reynolds Number Nearly Isotropic Turbulence in a Straight Duct and Contraction,” Phys. Fluids, 21 , pp. 2129–2141.

[CrossRef]Kolmogorov, A., 1963, “A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number,” J. Fluid Mech., 13 , pp. 82–85.

[CrossRef]Kolmogorov, A., 1941, “The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers,” C. R. Akad. Sci. SSSR, 30 , p. 301.

Tavoularis, S., and Karnik, U., 1989, “Further Experiments on the Evolution of Turbulent Stresses and Scales in Uniformly Sheared Turbulence,” J. Fluid Mech., 204 , pp. 457–478.

[CrossRef]Tavoularis, S., 1985, “Asymptotic Laws for Transversely Homogeneous Turbulent Shear Flows,” Phys. Fluids, 28 , pp. 999–1001.

[CrossRef]Tavoularis, S., and Corrsin, S., 1981, “Experiments in Nearly Homogenous Turbulent Shear Flow With a Uniform Mean Temperature Gradient. Part 1,” J. Fluid Mech., 104 , pp. 311–347.

[CrossRef]Harris, V., Grahm, J., and Corrsin, S., 1977, “Further Experiments in Nearly Homogeneous Shear Flow”. J. Fluid Mech., 81 , pp. 657–687.

[CrossRef]Wray, A., 1998, “Decaying Isotropic Turbulence,” AGARD Advis. Rep., 345 , pp. 63–64.

de Bruyn Kops, S., and Riley, J., 1999, “Direct Numerical Simulation of Laboratory Experiments in Isotropic Turbulence,” Phys. Fluids A, 10 , pp. 2125–2127.

Wang, H., Gamard, S., Sonnenmeier, J. R., and George, W. K., 2000, “Evaluating DNS of Isotropic Turbulence using Similarity Theory,” "*Proceedings of the ICTAM 2000*", Chicago, IL, 27 Aug.–1 Sept. 2000.

George, W., Wang, H., Wollblad, C., and Johansson, T., 2001, “Homogeneous Turbulence and its Relation to Realizable Flows,” "*Proceedings of the 14th Australasian Fluid Mechanics Conference*", Adelaide, S. Australia, Dec. 2001, pp. 41–48.

Antonia, R., Smalley, R., Zhou, T., Anselmet, F., and Danaila, L., 2003, “Similarity of Energy Structure Functions in Decaying Homogeneous Isotropic Turbulence,” J. Fluid Mech., 487 , pp. 245–269.

[CrossRef]Antonia, R., and Orlandi, P., 2004, “Similarity of Decaying Isotropic Turbulence With a Passive Scalar,” J. Fluid Mech., 505 , pp. 123–151.

[CrossRef]Lavoie, P., Burattini, P., Djendidi, L., and Antonia, R., 2005, “Effect of Initial Conditions on Decaying Grid Turbulence at Low

*R*λ,” Exp. Fluids, 39 , pp. 865–874.

[CrossRef]Burattini, P., Lavoie, P., Agrawal, A., Djendidi, L., and Antonia, R., 2006, “Power Law of Decaying Homogeneous Isotropic Turbulence at Low Reynolds Number,” Phys. Rev. E, 73 , p. 066304.

[CrossRef]Hurst, D., and Vasillicos, J., 2007, “Scalings and Decay of Fractal-Generated Turbulence,” Phys. Fluids, 19 , p. 035103.

[CrossRef]Lavoie, P., Djendidi, L., and Antonia, R., 2007, “Effects of Initial Conditions in Decaying Turbulence Generated by Passive Grids,” J. Fluid Mech., 585 , pp. 395–420.

[CrossRef]George, W. K., and Wang, H., 2002, “The Spectral Transfer in Isotropic Turbulence,” "*Proceedings of the IUTAM Symposium On Reynolds Number Scaling in Turbulent Flow*", Princeton, NJ, Sept. 11–13, Kluwer, MA.

Kang, H., Chester, S., and Meneveau, C., 2003, “Decaying Turbulence in an Active-Grid-Generated Flow and Comparisons With Large-Eddy Simulation,” J. Fluid Mech., 480 , pp. 129–160.

[CrossRef]Hurst, D., 2006, “Wind Tunnel Experiments in Fractal Induced Turbulence,” Ph. D. Thesis, Deptartmemt of Aeronautics, Imperial College of London, London, UK.

Seoud, R., and Vassilicos, J., 2007, “Dissipation and Decay of Fractal-Generated Turbulence,” Phys. Fluids, 19 , p. 105108.

[CrossRef]George, W. K., and Wang, H., 2009, “The Exponential Decay of Homogenous Turbulence,” Phys. Fluids, 21 , p. 025108.

[CrossRef]Krogstad, P., and Davidson, P., 2011, “Freely Decaying Homogeneous Turbulence Generated by Multi-Scale Grids,” J. Fluid Mech., 680 , pp. 417–434.

[CrossRef]Valente, P., and Vassilicos, J., 2011, “Dependence of Decaying Homogeneous Isotropic Turbulence on Inflow Conditions,” Phys. Lett. A, 376 , pp. 510–514.

[CrossRef]Loitsianskii, L., 1939, “Some Basic Laws for Isotropic Turbulence,” Tech. Report 440, Central Aero- Hydrodynamic Institute, Moscow, (translated as NACA Tech. Memo 1079).

Vassilicos, J., 2011, “An Infinity of Possible Invariants for Decaying Homogeneous Turbulence,” Phys. Lett. A, 375 , p. 1010–1019.

[CrossRef]Gustafsson, J., and George, W., 2011, “Energy Spectra at Low Wavenumbers in Homogeneous Incompressible Turbulence,” Phys. Lett. A, 375 , pp. 2850–2853.

[CrossRef]Nelkin, M., 1996, “Universality and Scaling in Fully Developed Turbulence,” Adv. Phys., 43 , pp. 143–181.

[CrossRef]George, W., and Tutkun, M., 2009, “Mind the Gap: A Guideline for Large Eddy Simulation,” Philos. Trans. R. Soc. A, 367 , pp. 2839–2847.

[CrossRef]Champagne, F., 1978, “The Fine-Scale Structure of the Turbulent Velocity Field,” J. Fluid Mech., 86 , pp. 67–108.

[CrossRef]Tennekes, H., and Wyngaard, J., 1972, “The Intermittent Small-Scale Structure of Turbulence: Data-Processing Hazards,” J. Fluid Mech., 55 , pp. 93–103.

[CrossRef]Lumley, J., 1965, “Interpretation of Time Spectra in High Intensity Shear Flow,” Phys. Fluids, 8 , pp. 1056–1063.

[CrossRef]Burattini, P., Lavoie, P., and Antonia, R., 2008, “Velocity Derivative Skewness in Isotropic Turbulence and its Measurement with Hot Wires,” Exp. Fluids, 45 , pp. 523–535.

[CrossRef]Mazellier, N., and Vassilicos, J., 2010, “Turbulence Without Richardson-Kolmogorov Cascade,” Phys. Fluids, 22 , p. 075101.

[CrossRef]Gamard, S., and George, W., 2000, “Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence,” J. Flow Turbul. Combust., 63 , pp. 443–477.

[CrossRef]Slessor, M. D., Bond, C. L., and Dimotakis, P. E., 1998, “Turbulent Shear-Layer Mixing at High Reynolds Numbers: Effects of Inflow Conditions,” J. Fluid Mech., 376 , pp. 115–138.

[CrossRef]Ristorcelli, J. R., and Clark, T. T., 2004, “Rayleigh-Taylor Turbulence: Self-Similar Analysis and Direct Numerical Simulations,” J. Fluid Mech., 507 , pp. 213–253.

[CrossRef]Ramaprabhu, P., Dimonte, G., and Andrews, M., 2005, “A Numerical Study of the Influence of Initial Perturbation on the Turbulent Rayleigh-Taylor Instability,” J. Fluid Mech., 536 , pp. 285–319.

[CrossRef]Mueschke, N., Andrews, M., and Schilling, O., 2006, “Experimental Characterization of Initial Conditions and Spatio-Temporal Evolution of a Small-Atwood-Number Rayleigh-Taylor Mixing Layer,” J. Fluid Mech., 567 , pp. 27–63.

[CrossRef]Youngs, D., 2008,“Turbulent Mixing due to Rayleigh-Taylor Instability,” Bull. Am. Phys. Soc., 53 (15), p. 123102.

Arndt, R., and Wosnik, M., 2006, “Experimental and Numerical Investigation of Large Scale Structures in Cavitating Wakes,” "*Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit*", AIAA Paper No. 2006–3046.

Cal, R., Brzek, B., Johansson, T., and Castillo, L., 2006, “Upstream Condition Effects on Rough Favorable Pressure Gradient Turbulent Boundary Layers,” "*Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit*", Reno, NV, Jan. 9–12, AIAA Paper No. AIAA-2006-3271.

Druault, P., Lardeau, S., Bonnet, J.-P., Coiffet, F., Delville, J., Lamballais, J. F. L. J., and Perret, L., 2004, “A Methodology for the Generation of Realistic 3-D Turbulent Unsteady Inlet Conditions for Les Computations,” AIAA J., 42 (3), pp. 447–456.

[CrossRef]