Chesnakas, C. J., and Jessup, S. D., 1989, “Cavitation and 3-D LDV Tip-Flowfield Measurements of Propeller 5168,” CRDKNSWD/HD-1460-02, Carderock Division, Naval Surface Warfare Center.

Paterson, E. G., Wilson, R. V., and SternF., 2003, “General-Purpose Parallel Unsteady RANS Ship Hydrodynamics Code: CFDSHIP-IOWA IIHR,” Technical Report No. 432.

Rhee, S. H., and Joshi, S., 2005, “Computational Validation for Flow around a Marine Propeller Using Unstructured Mesh Based Navier-Stokes Solver,” JSME Int. J., Ser. B, 48 (3), pp. 562–570.

[CrossRef]Hsiao, C., and Chahine, G. L., 2008, “Scaling of Tip Vortex Cavitation Inception for a Marine Open Propeller,” "*27th Symposium on Naval Hydrodynamics*", Seoul, Korea.

Hsiao, C., and Pauley, L. L., 1999, “Numerical Computation of Tip Vortex Flow Generated by a Marine Propeller,” ASME J. Fluids Eng., 212 , pp. 638–645.

[CrossRef]Oh, K.-J., and Kang, S.-H., 1995, “Numerical Calculation of the Viscous Flow around a Propeller Shaft Configuration,” Int. J. Numer. Methods Fluids, 21 (1), pp. 1–13.

[CrossRef]Stanier, M., 1998, “The Application of RANS Code to Investigate Propeller Scale Effects,” "*Proceeding of the 22nd Symposium on Naval Hydrodynamics*", Washington, D.C., pp. 222–233.

Chen, B., and Stern, F., 1999, “Computational Fluid Dynamics of Four-Quadrant Marine-Propulsor Flow,” J. Ship Res., 43 (4), pp. 218–228.

Funeno, I., 2002, “On Viscous Flow around Marine Propellers-Hub Vortex and Scale Effect,” J. Kansai Soc. Nav. Archit., 2002 (238), pp. 17–27.

Walters, D. K., and Cokljat, D., 2008, “A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow,” ASME Trans. J. Fluids Eng., 130 (12), pp. 121401.1–121401.14.

[CrossRef]Luke, E., 2007, “On Robust and Accurate Arbitrary Polytope CFD Solvers (Invited),” "*18th AIAA Computational Fluid Dynamics Conference*", Miami, FL, AIAA 2007-3956.

Luke, E., and Cinnella, P., 2007, “Numerical Simulations of Mixtures of Fluids Using Upwind Algorithms,” Comput. Fluids, 36 (10), pp. 1547–1566.

[CrossRef]Tong, X.-L., and Luke, E., 2004, “Turbulence Models and Heat Transfer in Nozzle Flows,” AIAA J., 42 (11), pp. 2391–2393.

[CrossRef]Wu, J., Tang, L., Luke, E., Tong, X.-L., and Cinnella, P., 2002, “Comprehensive Numerical Study of Jet-Flow Impingement over Flat Plates,” J. Spacecr. Rockets, 35 (1), pp. 357–366.

[CrossRef]Liu, Q., Luke, E., and Cinnella, P., 2005, “Coupling Heat Transfer and Fluid Flow Solvers for Multi-Disciplinary Simulations,” J. Thermophys. Heat Transfer, 19 (4), pp. 417–427.

[CrossRef]Tong, X.-L., and Luke, E., 2005, “Eulerian Simulations of Icing Collection Efficiency Using a Singularity Diffusion Model,” "*43rd AIAA Aerospace Sciences Meeting and Exhibit*", Reno, NV, AIAA Paper 2005-01246.

Kalitzin, G., Wu, X., and Durbin, P. A., 2003, “DNS of Fully Turbulent Flow in a LPT Passage,” Int. J. Heat Fluid Flow, 24 , pp. 636–644.

[CrossRef]van Driest, E. R., and Blumer, C. B., 1963, “Boundary Layer Transition, Free Stream Turbulence, and Pressure Gradient Effects,” AIAA J., 1 (6), pp. 1303–1306.

[CrossRef]Abu-Ghannam, B. J., and Shaw, R., 1980, “Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient, and Flow History,” J. Mech. Eng. Sci., 22 , pp. 213–228.

[CrossRef]Mayle, R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113 , pp. 509–537.

[CrossRef]Fasihfar, A., and Johnson, M. W., 1992, “An Improved Boundary Layer Transition Correlation,” "*ASME Paper No. 92-GT-245*".

Praisner, T. J., and Clark, J. P., 2007, “Predicting Transition in Turbomachinery-Part I: A Review and New Model Development,” ASME J. Turbomach., 129 , pp. 1–13.

[CrossRef]Edwards, J. R., Roy, C. J., Blottner, F. G., and Hassan, H. G., 2001, “Development of a One-Equation Transition/Turbulence Model,” AIAA J., 39 , pp. 1691–1698.

[CrossRef]Wang, C., and Perot, B., 2002, “Prediction of Turbulent Transition in Boundary Layers Using the Turbulent Potential Model,” J. Turbul., 3 , pp. 22–36.

[CrossRef]Walters, D. K., and Leylek, J. H., 2004, “A New Model for Boundary Layer Transition Using a Single-Point RANS Approach,” ASME J. Turbomach., 126 , pp. 193–202.

[CrossRef]Suzen, Y. B., and Huang, P. G., 2000, “Modeling of Flow Transition Using an Intermittency Transport Equation,” ASME Trans. J. Fluids Eng., 122 , pp. 273–284.

[CrossRef]Steelant, J., and Dick, E., 2001, “Modeling of Laminar-Turbulent Transition for High Freestream Turbulence,” ASME Trans. J. Fluids Eng., 123 , pp. 22–30.

[CrossRef]Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., 2006, “A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation,” ASME J. Turbomach., 128 , pp. 413–422.

[CrossRef]"*User Guide Fluent 6.12*", Ansys Inc., Canonsburg, PA.

Mayle, R. E., and Schulz, A., 1997, “The Path to Predicting Bypass Transition,” ASME J. Turbomach., 119 , pp. 405–411.

[CrossRef]Coupland, J., 1990, ERCOFTAC Special Interest Group on Laminar to Turbulent Transition and Retransition, T3A and T3B Test Cases.

Luke, E. A., and George, T., 2005, “Loci: A Rule-Based Framework for Parallel Multidisciplinary Simulation Synthesis,” J. Funct. Program., 15 (3), pp. 477–592.

[CrossRef]Luke, E. A., Tong, X.-L., and Cinnella, P., 2006, “Numerical Simulations of Fluids with a General Equation of State,” "*44th Aerospace Sciences Meeting*", Reno, NV, AIAA 2006-12951.

Menter, F. R., 1992, “Improved Two-Equation K-omega Turbulence Models for Aerodynamic Flows,” Ames Research Center, Moffett Field, NASA Technical Memorandum, 103975.

Gaither, J. A., Marcum, D. L., and Mitchell, B., 2000, “SolidMesh: A Solid Modeling Approach to Unstructured Grid Generation,” "*7th International Conference on Numerical Grid Generation in Computational Field Simulations*", Whistler, BC.

Marcum, D. L., 2001, “Efficient Generation of High Quality Unstructured Surface and Volume Grids,” Eng. Comput., 17 (3), pp. 211–233.

[CrossRef]Marcum, D. L., and Gaither, J. A., 1999, “Mixed Element Type Unstructured Grid Generation for Viscous Flow,” "*14th AIAA Computational Fluid Dynamics Conference*", Norfolk, VA, AIAA Paper 99-3252.

Remotigue, M. G., 1999, “Structured Grid Technology to Enable Flow Simulation in an Integrated System Environment,” Ph.D. dissertation, Mississippi State University, MS.

Menter, F. R., 1994, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J., 32 (8), pp. 1598–1605.

[CrossRef]Ito, M., 1987, “Calculation of Viscous Effects on Propeller Open Characteristics,” Trans. West-Japan Soc. Nav. Archit., 73 , pp. 83–96.

Uto, S., 1992, “Computation of Incompressible Viscous Flow around a Marine Propeller,” Jpn. Soc. Nav. Archit. Ocean Eng., 172 , pp. 213–224.

[CrossRef]Uto, S., 1993, “Computation of Incompressible Viscous Flow around a Marine Propeller, 2nd Report: Turbulent Flow Simulation,” Jpn. Soc. Nav. Archit. Ocean Eng., 173 , pp. 67–75.

[CrossRef]Uto, S., 1994, “Basic Study on the Scale Effect of the Viscous Flow around a Marine Propeller,” J. Kansai Soc. Nav. Archit., 222 , pp. 33–39.

Vlahostergios, Z., Yakinthos, K., and Goulas, A., 2009, “Separation-Induced Boundary Layer Transition: Modeling with a Non-linear Eddy-Viscosity Model Coupled with the Laminar Kinetic Energy Equation,” Int. J. Heat Fluid Flow, 30 (4), pp. 617–636.

[CrossRef]