Back, L. H., Cuffel, R. F., and Massier, P. F., 1969, “Laminarization of a Turbulent Boundary Layer in Nozzle Flow-Boundary Layer and Heat Transfer Measurements With Wall Cooling,” NASA Center, ASME Paper 69-HT-56.

McEligot, D. M., and Bankston, C. A., 1969, “Numerical Predictions for Circular Tube Laminarization by Heating,” NASA Center, ASME Paper 69-HT-52.

Kurganov, V. A., and Gladuntsov, A. I., 1977, “Laminarization of Flow and Heat Transfer Crisis in Pipes Under Conditions of Intense Heating of Turbulent-Flow of Gas Dissociating Endothermally at Wall,” High Temp., 15 (6), pp. 1052–1062.

Kawamura, M. H., and Takizuka, T., 1982, “Experiment on Laminarization of Strongly Heated Gas-Flow in Vertical Circular Tube,” J. Atomic Energy Society of Japan, 24 (1), pp. 60–67.

Fujii, S., Akino, N., Hishida, M., Kawamura, H., and Sanokawa, K., 1991, “Numerical-Studies on Laminarization of Heated Turbulent Gas-Flow in Annular Duct,” J. Atomic Energy Society of Japan, 33 (12), pp. 1180–1190.

Torii, S., Shimizu, A., Hasegawa, S., and Higasa, M., 1990, “Laminarization of Strongly Heated Gas-Flows in a Circular Tube (Numerical-Analysis by Means of a Modified Kappa-Epsilon Model),” JSME Int. J., Ser. II, 33 (3), pp. 538–547.

Torii, S., Shimizu, A., Hasegawa, S., and Kusama, N., 1991, “Laminarization of Strongly Heated Annular Gas Flows,” JSME Int. J., Ser. II, 34 (2), pp. 157–168.

Torii, S., and Yang, W. J., 1997, “Laminarization of Turbulent Gas Flow Inside a Strongly Heated Tube,” Int. J. Heat Mass Transfer

[CrossRef], 40 (13), pp. 3105–3117.

Torii, S., and Yang, W. J., 1999, “Swirling Effects on Laminarization of Gas Flow in a Strongly Heated Tube,” ASME Trans. J. Heat Transfer

[CrossRef], 121 (2), pp. 307–313.

Satake, S., Kunugi, T., Shehata, A. M., and McEligot, D. M., 2000, “Direct Numerical Simulation for Laminarization of Turbulent Forced Gas Flows in Circular Tubes With Strong Heating,” Int. J. Heat Fluid Flow

[CrossRef], 21 (5), pp. 526–534.

Jones, W. P., and Launder, B. E., 1972, “Prediction of Laminarization With a 2-Equation Model of Turbulence,” Int. J. Heat Mass Transfer

[CrossRef], 15 (2), pp. 301–314.

Howard, J. H. G., Patankar, S. V., and Bordynuik, R. M., 1980, “Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models,” ASME Trans. J. Fluids Eng., 102 (4), pp. 456–461.

Naot, D., Peled, A., and Tanny, J., 1990, “Response of Shear Flow Turbulence to Diffusional Electromagnetic Fluctuations,” Appl. Math. Model.

[CrossRef], 14 (5), pp. 226–236.

Morley, N. B., Gaizer, A. A., Tillack, M. S., and Abdou, M. A., 1995, “Initial Liquid Metal Magnetohydrodynamic Thin Film Flow Experiments in the Mcga-Loop Facility at UCLA,” Fusion Eng. Des., 27 , pp. 725–730.

Kim, E.-J., Hahm, T. S., and Diamond, P. H., 2001, “Eddy Viscosity and Laminarization of Sheared Flow in Three Dimensional Reduced Magnetohydrodynamic Turbulence,” Phys. Plasmas

[CrossRef], 8 , pp. 3576–3582.

Beér, J. M., Chigier, N. A., Davies, T. W., and Bassindale, K., 1971, “Laminarization of Turbulent Flames in Rotating Environments,” Combust. Flame

[CrossRef], 16 , pp. 39–45.

Takagi, T., Shin, H.-D., and Ishio, A., 1980, “Local Laminarization in Turbulent Diffusion Flames,” Combust. Flame

[CrossRef], 37 , pp. 163–170.

Zawadzki, A., and Jarosinski, J., 1983, “Laminarization of Flames in Rotating Flow,” Combust. Sci. Technol.

[CrossRef], 35 , pp. 1–13.

Rodi, W., Pennell, W. T., and Eckert, E. R. G., 1969, “Laminarization of Turbulent Flow in a Circular Porous Tube With Uniform Mass Injection Through Tube Wall,” Mech. Eng. (Am. Soc. Mech. Eng.), 91 (11), p. 67.

Arnal, D., and Bulgubure, C., 1996, “Drag Reduction by Boundary Layer Laminarization,” Rech. Aerosp., 3 , pp. 157–165.

Moin, R. D., and Moin, P., 1987, “The Effects of Curvature in Wall-Bounded Turbulent Flows,” J. Fluid Mech.

[CrossRef], 175 , pp. 479–510.

Cheah, S. C., Iacovides, H., Jackson, D. C., JI, H., and Launder, B. E., 1996, “LDA Investigation of the Flow Development Through Rotating U-Ducts,” ASME J. Turbomach.

[CrossRef], 118 (3), pp. 590–596.

Lopes, A. S., Piomelli, U., and Palma, J. M. L. M., 2006, “Large-Eddy Simulation of the Flow in an S-Duct,” J. Turbul., 7 (11), pp. 1–30.

Sewall, E. A., Tafti, D. K., Graham, A. B., and Thole, K. A., 2006, “Experimental Validation of Large Eddy Simulation of Flow and Heat Transfer in a Stationary Ribbed Duct,” Int. J. Heat Fluid Flow

[CrossRef], 27 , pp. 243–258.

Laskowski, G. M., and Durbin, P. A., 2007, “Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Finite Serpentine Passage,” Phys. Fluids

[CrossRef], 19 (1), 015101.

Hirai, S., Takagi, T., and Matsumoto, M., 1986, “Prediction of the Laminarization Phenomena in Turbulent Swirling Flows,” Bull. JSME, 29 (258), pp. 4462–4470.

Nishibori, K., Kikuyama, K., and Murakami, M., 1987, “Laminarization of Turbulent-Flow in the Inlet Region of an Axially Rotating Pipe,” JSME Int. J., 30 (260), pp. 255–262.

Hirai, S., Takagi, T., and Matsumoto, M., 1988, “Predictions of the Laminarization Phenomena in an Axially Rotating Pipe-Flow,” ASME Trans. J. Fluids Eng., 110 (4), pp. 424–430.

Pashtrapanska, M., Jovanović, J., Lienhart, H., and Durst, F., 2006, “Turbulence Measurements in a Swirling Pipe Flow,” Exp. Fluids

[CrossRef], 41 , pp. 813–827.

Yang, Z., 2000, “Large Eddy Simulation of Fully Developed Turbulent Flow in a Rotating Pipe,” Int. J. Numer. Methods Fluids

[CrossRef], 33 , pp. 681–694.

Johnston, J. P., Hallen, R. M., and Lezius, R. K., 1972, “Effect of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow,” J. Fluid Mech.

[CrossRef], 56 , pp. 533–557.

Kristoffersen, R., and Andersson, H. I., 1993, “Direct Simulations of Low Reynolds-Number Turbulent-Flow in a Rotating Channel,” J. Fluid Mech.

[CrossRef], 256 , pp. 163–197.

Macfarlane, I., Joubert, P. N., and Nickels, T. B., 1998, “Secondary Flows and Developing, Turbulent Boundary Layers in a Rotating Duct,” J. Fluid Mech.

[CrossRef], 373 , pp. 1–32.

Murata, A., and Mochizuki, S., 1999, “Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct,” Int. J. Heat Mass Transfer

[CrossRef], 42 (20), pp. 3803–3814.

Pallares, J., and Davidson, L., 2000, “Large-Eddy Simulations of Turbulent Flow in a Rotating Square Duct,” Phys. Fluids

[CrossRef], 12 , pp. 2878–2894.

Nicoud, F., and Ducros, F., 1999, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor,” Flow, Turbul. Combust.

[CrossRef], 62 (3), pp. 183–200.

Smagorinsky, J., 1963, “General Circulation Experiments With Primitive Equations. I. The Basic Experiment,” Mon. Weather Rev.

[CrossRef], 91 , pp. 99–164.

2001, Fluent 6.2 User Guide, Fluent Inc., Lebanon.

Chorin, A. J., 1968, “Numerical Solution of the Navier-Stokes Equations,” Math. Comput.

[CrossRef], 22 (104), pp. 745–762.

Leonard, B. P., 1991, “The Ultimate Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 88 , pp. 17–74.

Ferziger, J. H., and Peric, M., 1996, "*Computational Methods for Fluid Dynamics*", Springer, New York.

Issa, R. I., 1986, “Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting,” J. Comput. Phys.

[CrossRef], 62 , pp. 40–65.

Patankar, S. V., 1980, "*Numerical Heat Transfer and Fluid Flows*", Hemisphere, Washington, DC.

Gavralakis, S., 1992, “Numerical-Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct,” J. Fluid Mech.

[CrossRef], 244 , pp. 101–129.

Guleren, K. M., and Turan, A., 2007, “Validation of Large-Eddy Simulation of Strongly Curved Stationary and Rotating U-Duct Flows,” Int. J. Heat Fluid Flow

[CrossRef], 28 (5), pp. 909–921.

Hathaway, M. S., Chriss, R. M., Wood, J. R., and Strazisar, A., 1993, “Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field,” ASME J. Turbomach.

[CrossRef], 115 , pp. 527–542.

Pope, S. B., 2000, "*Turbulent Flows*", Cambridge University Press, Cambridge.

Moser, R. D., Kim, J., and Mansour, N. N., 1999, “Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590,” Phys. Fluids

[CrossRef], 11 , pp. 943–945.

Alvelius, K., 1999, Ph.D. thesis, Department of Mechanics Royal Insititue of Technology, Stockholm, Sweden.

Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A

[CrossRef], 3 , pp. 1760–1765.

Kim, W. W., and Menon, S., 1995, “A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations,” Paper No. AIAA-95-035.

Pallares, J., Grau, F. X., and Davidson, L., 2005, “Pressure Drop and Heat Transfer Rates in Forced Convection Rotating Square Duct Flows at High Rotation Rates,” Phys. Fluids

[CrossRef], 17 (7), 075102.

Prandtl, L., 1952, "*Essentials of Fluid Dynamics*", Hafner, New York.

Launder, B. E., and Spalding, D. B., 1972, “Lectures in Mathematical Models of Turbulence,” Academic, London.

Wilcox, D. C., 1998, "*Turbulence Modeling for CFD*", DCW Industries, Inc., La Canada, CA.

Daly, B. J., and Harlow, F. H., 1970, “Transport Equations in Turbulence,” Phys. Fluids

[CrossRef], 13 , pp. 80.