Rhee, H. S., Koseff, J. R., and Street, R. L., 1984, “Flow Visualization of a Recirculating Flow by Rheoscopic Liquid and Liquid Crystal Techniques,” Exp. Fluids

[CrossRef], 2 , pp. 57–64.

Migeon, C., 2002, “Details on the Start-Up Development of the Taylor-Görtler-Like Vortices Inside a Square-Section Lid-Driven Cavity for 1,000<Re<3,200,” Exp. Fluids, 33 (4), pp. 594–602.

Moffatt, H. K., 1964, “Viscous and Resistive Eddies Near a Sharp Corner,” J. Fluid Mech.

[CrossRef], 18 (1), pp. 1–18.

Koseff, J. R., and Street, R. L., 1984, “The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations,” ASME J. Fluids Eng., 106 , pp. 390–398.

Koseff, J. R., and Street, R. L., 1984, “On End-Wall Effects in a Lid-Driven Cavity Flow,” ASME J. Fluids Eng., 106 , pp. 385–389.

Freitas, C. J., Street, R. L., Findikakis, A. N., and Koseff, J. R., 1994, “Numerical Simulation of Three-Dimensional Flow in a Cavity,” Int. J. Numer. Methods Fluids

[CrossRef], 5 , pp. 561–575.

Koseff, J. R., and Street, R. L., 1984, “Visualization Studies of a Shear-Driven Three-Dimensional Recirculating Flow,” ASME J. Fluids Eng., 106 , pp. 21–29.

Chiang, T. P., and Sheu, W. H., 1997, “Numerical Prediction of Eddy Structure in a Shear-Driven Cavity,” Comput. Mech., 20 , pp. 379–396.

Drikakis, D., Iliev, O. P., and Vassileva, D. P., 1998, “A Nonlinear Multigrid Method for the Three-Dimensional Incompressible Navier–Stokes Equations,” J. Comput. Phys.

[CrossRef], 146 (1), pp. 301–321.

Gilmanov, A., and Sotiropoulos, F., 2005, “A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3d, Geometrically Complex, Moving Bodies,” J. Comput. Phys.

[CrossRef], 207 (2), pp. 457–492.

Peng, Y., Shu, C., and Chew, Y. T., 2004, “A 3D Incompressible Thermal Lattice Boltzmann Model and its Application to Simulate Natural Convection in a Cubic Cavity,” J. Comput. Phys.

[CrossRef], 193 (1), pp. 260–274.

Shankar, P. N., and Deshpande, M. D., 2000, “Fluid Mechanics in the Driven Cavity,” Annu. Rev. Fluid Mech.

[CrossRef], 32 , pp. 93–136.

Guermond, J. L., Migeon, C., Pineau, G., and Quartapelle, L., 2002, “Start-Up Flows in a Three-Dimensional Rectangular Driven Cavity of Aspect Ratio 1:1:2 at Re=1000,” J. Fluid Mech., 450 , pp. 169–199.

Prasad, K., and Koseff, J. R., 1989, “Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow,” Phys. Fluids A

[CrossRef], 1 , pp. 208–218.

Michelsen, J. A., 1994, “Block Structured Multigrid Solution of 2D and 3D Elliptic PDE’s,” Department of Mechanical Engineering, Technical University of Denmark, Technical Report No. AFM 94-06.

Sørensen, N. N., 1995, “General Purpose Flow Solver Applied Over Hills,” Risø National Laboratory, Technical Report No. RISØ-R-827-(EN).

Sørensen, N. N., 1995, “General Purpose Flow Solver Applied Over Hills,” RISØ National Laboratory, Technical Report No. RISØ R-827-(EN).

Rhie, C. M., 1981, “A Numerical Study of the Flow Past an Isolated Airfoil With Separation,” Ph.D. thesis, University of Illinois, Urbana-Champaign, IL.

Patankar, S. V., and Spalding, D. B., 1972, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” Int. J. Heat Mass Transfer

[CrossRef], 15 , pp. 1787–1806.

Arnal, M., Lauer, O., Lilek, Z., and Peric, M., 1992, “Prediction of Three-Dimensional Lid Driven Cavity Flow,” "*GAMM Workshop*", M.Deville , T.H.Le, and Y.Morchoisne, eds., pp. 13–24.

Kost, A., Mitra, N. K., Fiebig, M., and Bochum, R. U., 1992, “Numerical Simulation of Three Dimensional Unsteady Flow in a Cavity,” "*GAMM Workshop*", M.Deville, T.H.Le, and Y.Morchoisne, eds., Vol. 36 , pp. 79–80.

Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J., and Na, Y., 1998, “Turbulent Structures of Wall-Bounded Shear Flws Using DNS Data,” J. Fluid Mech.

[CrossRef], 357 , pp. 225–247.

Perry, A. E., and Chong, M. S., 1987, “Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts,” Annu. Rev. Fluid Mech.

[CrossRef], 19 , pp. 125–155.

Chiang, T. P., Sheu, W. H., and Hwang, R. R., 1997, “Three-Dimensional Vortex Dynamics in a Shear-Driven Rectangular Cavity,” Int. J. Numer. Methods Fluids, 8 , pp. 201–214.