Qu, W., and Mudawar, I., 2003, “Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods,” Int. J. Heat Mass Transfer, 46 (15), pp. 2755–2771.

[CrossRef]Triplett, K., Ghiaasiaan, S., Abdel-Khalik, S., and Sadowski, D., 1999, “Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns,” Int. J. Multiphase Flow, 25 (3), pp. 377–394.

[CrossRef]Cubaud, T., 2004, “Transport of Bubbles in Square Microchannels,” Phys. Fluids, 16 (12), pp. 4575–4585.

[CrossRef]Sharp, K., and Adrian, R., 2005, “On Flow-Blocking Particle Structures in Microtubes,” Microfluid. Nanofluid., 1 (4), pp. 376–380.

[CrossRef]Wang, E., Shankar, D., Hidroo, D., Fogg, C. H., Koo, J., Santiago, J., Goodson, K., and Kenny, T., 2004, “Liquid Velocity Field Measurements in Two-Phase Microchannel Convection,” Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation , Pisa, Italy.

Lee, P., Tseng, F., and Pan, C., 2004, “Bubble Dynamics in Microchannels. Part I: Single Microchannel,” Int. J. Heat Mass Transfer, 47 (25), pp. 5575–5589.

[CrossRef]Li, H., Tseng, F., and Pan, C., 2004, “Bubble Dynamics in Microchannels. Part II: Two Parallel Microchannels,” Int. J. Heat Mass Transfer, 47 (25), pp. 5591–5601.

[CrossRef]Mukherjee, A., and Kandlikar, S., 2005, “Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels,” Proceedings of the ICMM05, Third International Conference on Microchannels and Minichannels , Toronto, Canada, Vol. 75143 .

Bleris, L., Garcia, J., Arnold, M., and Kothare, M., 2006, “Model Predictive Hydrodynamic Regulation of Microflows,” J. Micromech. Microeng., 16 (9), pp. 1792–1799.

[CrossRef]Glowinski, R., Pan, T., Hesla, T., Joseph, D., and Periaux, J., 2001, “A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies-Application to Particulate Flow,” J. Comput. Phys., 169 (2), pp. 363–426.

[CrossRef]Patankar, N., 2001, “A Formulation for Fast Computations of Rigid Particulate Flows,” Center for Turbulence Research Annual Research Briefs 2001, pp. 185–196.

Apte, S. V., Martin, M., and Patankar, N., 2009, “A Numerical Method for Fully Resolved Simulation (FRS) of Rigid Particle-Flow Interactions in Complex Flows,” J. Comput. Phys., 228 (8), pp. 2712–2738.

[CrossRef]Patankar, N., Singh, P., Joseph, D., Glowinski, R., and Pan, T., 2000, “A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,” Int. J. Multiphase Flow, 26 (9), pp. 1509–1524.

[CrossRef]Sharma, N., and Patankar, N., 2005, “A Fast Computation Technique for the Direct Numerical Simulation of Rigid Particulate Flows,” J. Comput. Phys., 205 (2), pp. 439–457.

[CrossRef]Kim, D., and Choi, H., 2000, “A Second-Order Time-Accurate Finite Volume Method for Unsteady Incompressible Flow on Hybrid Unstructured Grids,” J. Comput. Phys., 162 (2), pp. 411–428.

[CrossRef]Mahesh, K., Constantinescu, G., Apte, S., Iaccarino, G., Ham, F., and Moin, P., 2006, “Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries,” ASME J. Appl. Mech., 73 , pp. 374–381.

[CrossRef]Roma, A., Peskin, C., and Berger, M., 1999, “An Adaptive Version of the Immersed Boundary Method,” J. Comput. Phys., 153 (2), pp. 509–534.

[CrossRef]Ferziger, J., and Perić, M., 2002, "*Computational Methods for Fluid Dynamics*", Springer, New York.

van der Vorst, H., 2003, "*Iterative Krylov Methods for Large Linear Systems*", Cambridge University Press, Cambridge, England.

Ham, F., and Young, Y., 2003, “A Cartesian Adaptive Level Set Method for Two-Phase Flows,” Center for Turbulence Research Annual Research Briefs, pp. 227–237.

Leung, L., 1999, "*System Identification-Theory for the User*", Prentice- Hall, Englewood Cliffs, NJ.

Zhu, Y., 2001, "*Multivariable System Identification for Process Control*", Elsevier, New York.

Camacho, E., and Bordons, C., 2004, "*Model Predictive Control*", Springer-Verlag, Berlin.

Qu, W., Mudawar, I., Lee, S., and Wereley, S., 2006, “Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel,” ASME J. Electron. Packag., 128 , pp. 1–9.

[CrossRef]Dütsch, H., Durst, F., Becker, S., and Lienhart, H., 1998, “Low-Reynolds-Number Flow Around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers,” J. Fluid Mech., 360 , pp. 249–271.

[CrossRef]Lomholt, S., Stenum, B., and Maxey, M., 2002, “Experimental Verification of the Force Coupling Method for Particulate Flows,” Int. J. Multiphase Flow, 28 (2), pp. 225–246.

[CrossRef]Kim, D., and Choi, H., 2006, “Immersed Boundary Method for Flow Around an Arbitrarily Moving Body,” J. Comput. Phys., 212 (2), pp. 662–680.

[CrossRef]Mordant, N., and Pinton, J., 2000, “Velocity Measurement of a Settling Sphere,” Eur. Phys. J. B, 18 (2), pp. 343–352.

[CrossRef]Finn, J., 2009, “A Multiscale Modeling Approach for Bubble-Vortex Interactions in Hydropropulsion Systems,” MS thesis, Oregon State University, Corvallis, OR.

Shridhar, R., and Cooper, D., 1998, “A Tuning Strategy for Unconstrained Multivariable Model Predictive Control,” Ind. Eng. Chem. Res., 37 , pp. 4003–4016.

[CrossRef]Koumoutsakos, P., 2005, “Multiscale Flow Simulations Using Particles,” Annu. Rev. Fluid Mech., 37 (1), pp. 457–487.

[CrossRef]Peskin, C., 2003, “The Immersed Boundary Method,” Acta Numerica, 11 , pp. 479–517.