Numerical simulations for mixed convection flow of micropolar fluid in an open ended arc-shape cavity have been carried out in this study. Computation is performed using the alternate direct implicit (ADI) method together with the successive over relaxation (SOR) technique for the solution of governing partial differential equations. The flow phenomenon is examined for a range of values of Rayleigh number 102 ≤ Ra ≤ 106 , Prandtl number 7 ≤ Pr ≤ 50, and Reynolds number 10 ≤ Re ≤ 100. The study is mainly focused on how the micropolar fluid parameters affect the fluid properties in the flow domain. It was found that despite the reduction of flow in the core region, the heat transfer rate increases, whereas the skin friction and microrotation decrease with the increase in the vortex viscosity parameter Δ.