0
TECHNICAL PAPERS

Numerical Analysis of Two-Phase Pipe Flow of Liquid Helium Using Multi-Fluid Model

[+] Author and Article Information
Jun Ishimoto

Department of Intelligent Machines and System Engineering, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561 Japane-mail: ishimoto@cc.hirosaki-u.ac.jp

Mamoru Oike, Kenjiro Kamijo

Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 Japan

J. Fluids Eng 123(4), 811-818 (May 23, 2001) (8 pages) doi:10.1115/1.1400747 History: Received February 17, 2000; Revised May 23, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Filina, N. N., and Weisend, J. G., 1996, Cryogenic Two-Phase Flow, Cambridge University Press, New York, NY, pp. 20–76.
Van Sciver, S. W., 1996, Helium Cryogenics, Plenum Press, New York, N.Y., pp. 77–130.
Cheremisinoff, N. P., 1989, Encyclopedia of Fluid Mechanics Volume 8, Aerodynamics and Compressible Flows, Gulf Publishing Corp., Houston, Texas, pp. 1039–1061.
Kamijo,  K., Yoshida,  M., and Tsujimoto,  Y., 1993, “Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer,” J. Propul. Power, 9, No. 6, pp. 819–826.
King,  J. A., 1972, “Design of Inducers for Two-Phase Operation Final Report,” NASA CR-123555, pp. 1–96.
Maki,  K., Ishii,  T., Kobayashi,  K., and Murakami,  M., 2000, “Visualization and Pressure Variation of Cavitation in He II Flow,” Journal of the Cryogenic Society of Japan, (in Japanese) 35, No. 1, pp. 16–21.
Ishii, T., Maki, K., and Murakami, M., 2000, “Temperature Variation Induced by Cavitation Flow of Liquid Helium,” Proceedings of 18th International Cryogenic Engineering Conference, (in CD ROM).
Ludtke,  P. R., and Daney,  D. E., 1988, “Cavitation Characteristics of a Small Centrifugal Pump in He I and He II,” Cryogenics, 28, pp. 96–100.
Daney,  D. E., 1988, “Cavitation in Flowing Superfluid Helium,” Cryogenics, 28, pp. 132–136.
Ishimoto,  J., Oike,  M., and Kamijo,  K., 2000, “Two-Dimensional Numerical Analysis of Boiling Two-Phase Flow of Liquid Helium,” JSME International Journal, Series B, 43, No. 1, pp. 62–70.
Kataoka,  I., 1986, “Local Instant Formulation of Two-phase Flow,” Int. J. Multiphase Flow, 12, No. 5, pp. 745–758.
Landau,  L., 1941, “The Theory of Superfluidity of Helium II,” Journal of Physics, V, No. 1, pp. 71–90.
Harlow,  F. H., and Amsden,  A. A., 1975, “Numerical Calculation of Multiphase Fluid Flow,” J. Comput. Phys., 17, pp. 19–52.
Cook,  T. L., and Harlow,  F. H., 1986, “Vortices in Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, 12, No. 1, pp. 35–61.
Yamamoto,  S., Hagari,  H., and Murayama,  M., 2000, “Numerical Simulation of Condensation around the 3-D Wing,” Transactions of The Japan Society for Aeronautical and Space Sciences, 42, No. 138, pp. 182–189.
Iriya,  I., Yamamoto,  S., and Daiguji,  H., 1996, “Numerical Method for Transonic Viscous Flow Considering Humidity,” Trans. Jpn. Soc. Mech. Eng., Ser. B, 62, No. 603, pp. 3854–3859.
Young,  J. B., 1992, “Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades,” ASME J. Turbomach., 114, pp. 569–579.
Donnelly,  R. J., 1993, “Quantized Vortices and Turbulence in Helium II,” Annu. Rev. Fluid Mech., 25, pp. 325–371.
Bekarevich,  I. L., and Khalatnikov,  I. M., 1961, “Phenomenological Derivation of the Equations of Vortex Motion in Helium II,” Sov. Phys. JETP, 13, No. 3, pp. 643–646.
Hall,  H. E., and Vinen,  W. F., 1956, “The Rotation of Liquid Helium II, II. The Theory of Mutual Friction in Unif\ormly Rotating Helium II,” Proc. R. Soc. London, Ser. A, 238, pp. 215–234.
Tsubota,  M., and Yoneda,  H., 1995, “Dynamics of Quantized Vortices in Rotating Superfluid,” J. Low Temp. Phys., 101, No. 3, pp. 815–820.
Kashani,  A., Van Sciver,  S. W., and Strikwerda,  J. C., 1989, “Numerical Solution of Forced Convection Heat Transfer in He II,” Numer. Heat Transfer, Part A, 16, pp. 213–228.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, New York, NY, pp. 246–255.
Tomiyama,  A., Zun,  I., Higaki,  H., Makino,  Y., and Sakaguchi,  T., 1997, “A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation,” Nucl. Eng. Des., 175, pp. 77–86.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York, NY, pp. 460–471.
Rubinow,  S. I., and Keller,  J. B., 1965, “The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid,” J. Fluid Mech., 22, pp. 447–459.
Auton,  T. R., 1987, “The Lift Force on a Spherical Body in Rotational Flow,” J. Fluid Mech., 183, pp. 199–218.
Auton,  T. R., Hunt,  J. C. R., and Prud’homme,  M., 1988, “The Force Exerted on a Body in Invisid Unsteady Non-Uniform Rotational Flow,” J. Fluid Mech., 197, pp. 241–257.
Saffman,  P. G., 1965, “The Lift on a Small Sphere in a Slow Share Flow,” J. Fluid Mech., 22, Part 2, pp. 385–400.
Dennis,  S. C. R., Singh,  S. N., and Ingham,  D. B., 1980, “The Steady Flow Due to A Rotating Sphere at Low and Moderate Reynolds Numbers,” J. Fluid Mech., 101, Part 2, pp. 257–279.
Takagi,  H., 1977, “Viscous Flow Induced by Slow Rotation of Sphere,” J. Phys. Soc. Jpn., 42, No. 1, pp. 319–325.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, San Diego, CA, pp. 97–141.
Dobran,  F., 1988, “Liquid and Gas-Phase Distributions in A Jet With Phase Change,” ASME J. Heat Transfer, 110, pp. 955–960.
Solbrig,  C. W., McFadden,  J. H., Lyczkowski,  R. W., and Hughes,  E. D., 1978, “Heat Transfer and Friction Correlations Required to Describe Steam-water Behavior in Nuclear Safety Studies,” AIChE Symp. Ser., 74, No. 174, pp. 100–128.
Hirt,  C. W., and Romero,  N. C., 1975, “Application of a Drift Flux Model to Flashing in Straight Pipes,” Los Alamos Scientific Laboratory Report, LA-6005-MS, pp. 1–16.
Maynard,  J., 1976, “Determination of the Thermodynamics of He II from Sound-Velocity Data,” Phys. Rev. B, 14, No. 9, pp. 3868–3891.
Moses,  C. A., and Stein,  G. D., 1978, “On the Growth of Steam Droplets Formed in Laval Nozzle Using Both Static Pressure and Light Scattering Measurements,” ASME J. Fluids Eng., 100, pp. 311–322.
Tomiyama,  A., and Hirano,  M., 1994, “An Improvement of the Computational Efficiency of the SOLA Method,” JSME International Journal, Series B, 37, No. 4, pp. 821–826.
Amsden,  A. A., and Harlow,  F. H., 1970, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” Los Alamos Scientific Laboratory Report, LA-4370.

Figures

Grahic Jump Location
Schematic of model for numerical analysis
Grahic Jump Location
Time evolution of void fraction distributions
Grahic Jump Location
Instantaneous liquid phase pressure contours
Grahic Jump Location
Time evolution of liquid phase temperature profiles
Grahic Jump Location
Instantaneous normal fluid velocity vector
Grahic Jump Location
Instantaneous superfluid velocity vector
Grahic Jump Location
Instantaneous gas phase velocity vector

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In