0
TECHNICAL PAPERS

On the Mathematical Description and Simulation of Turbulent Flow in a Porous Medium Formed by an Array of Elliptic Rods

[+] Author and Article Information
Marcos H. J. Pedras

Instituto de Pesquisa e Desenvolvimento IP&D, UNIVAP, 12244-000, São José dos Campos, SP, Brazil

Marcelo J. S. de Lemos

Departamento de Energia - IEME, Instituto Tecnológico de Aeronáutica - ITA, 12228-900, São José dos Campos, SP, Brazile-mail: delemos@mec.ita.br

J. Fluids Eng 123(4), 941-947 (Aug 08, 2001) (7 pages) doi:10.1115/1.1413244 History: Received January 18, 2001; Revised August 08, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Darcy, H., 1856, Les Fontaines Publiques de la Vile de Dijon, Victor Dalmond, Paris.
Forchheimer,  P., 1901, “Wasserbewegung durch Boden,” Z. Ver. Deutsch. Ing. 45, pp. 1782–1788.
Brinkman,  H. C., 1947, “A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles, ” Appl. Sci. Res., A1, pp. 27–34.
Ward,  J. C., 1964, “Turbulent Flow in Porous Media,” J. Hydraul. Div. Am. Soc. Civ. Eng. 90, pp, 1–12.
Whitaker,  S., 1969, “Advances in Theory of Fluid Motion in Porous Media,” Ind. Eng. Chem., 61, pp. 14–28.
Bear, J., 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.
Vafai,  K., and Tien,  C. L., 1981, “Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media,” Int. J. Heat Mass Transf., 24, pp. 195–203.
Whitaker, S., 1999, The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht,
Prausnitz,  J. M., and Wilhelm,  R. H., 1957, “Turbulent Concentrations Fluctuations in a Packed Bed,” Ind. Eng. Chem., 49, pp. 237–246.
Mickley,  H. S., Smith,  K. A., and Korchak,  E. I., 1965, “Fluid Flow in Packed Beds,” Chem. Eng. Sci., 20, pp. 237–246.
Lee, K., and Howell, J. R., 1987, “Forced Convective and Radiative Transfer Within a Highly Porous Layer Exposed to a Turbulent External Flow Field,” Proc. of the 1987 ASME-JSME Thermal Eng. Joint Conf., Vol. 2, pp. 377–386.
Wang,  H., and Takle,  E. S., 1995, “Boundary-Layer Flow and Turbulence Near Porous Obstacles,” Boundary-Layer Meteorol., 74, pp. 73–88.
Antohe,  B. V., and Lage,  J. L., 1997, “A General Two-Equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media,” Int. J. Heat Mass Transf., 40, pp. 3013–3024.
Getachew,  D., Minkowycz,  W. J., and Lage,  J. L., 2000, “A Modied Form of the k-ε Model for Turbulent Flow of an Incompressible Fluid in Porous Media,” Int. J. Heat Mass Transf., 43, pp. 2909–2915.
Masuoka,  T., and Takatsu,  Y., 1996, “Turbulence Model for Flow Through Porous Media,” Int. J. Heat. Mass Transfer, 39, pp. 2803–2809.
Kuwahara,  F., Kameyama,  Y., Yamashita,  S., and Nakayama,  A., 1998, “Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array,” J. Porous Media 1, pp. 47–55.
Kuwahara, F., and Nakayama, A., 1998, “Numerical Modeling of Non-Darcy Convective Flow in a Porous Medium,” Proc. 11th Int. Heat Transf. Conf., Kyongyu, Korea, Aug. 23–28.
Takatsu,  Y., and Masuoka,  T., 1998, “Turbulent Phenomena in Flow Through Porous Media, J. Porous Media, 3, pp. 243–251.
Nakayama,  A., and Kuwahara,  F., 1999, “A Macroscopic Turbulence Model for Flow in a Porous Medium,” ASME J. Fluids Eng., 121, pp. 427–433.
Travkin, V. S., and Catton, I., 1992, “Model of Turbulent Thermal Diffusivity and Transfer Coefficients for a Regular Packed Bed of Spheres,” Proc. 28th National Heat Transfer Conference, San Diego, C-4, ASME-HTD-193, pp. 15–23.
Travkin, V. S., Catton, I., and Gratton, L., 1993, “Single-Phase Turbulent Transport in Prescribed Non-Isotropic and Stochastic Porous Media,” Heat Transfer in Porous Media, ASME-HTD-240, pp. 43–48.
Gratton, L., Travkin, V. S., and Catton, I., 1994, “Numerical Solution of Turbulent Heat and Mass Transfer in a Stratified Geostatistical Porous Layer for High Permeability Media,“ ASME Proceedings HTD-vol.. 41, pp. 1–14.
Travkin,  V. S., and Catton,  I., 1995, “A Two Temperature Model for Turbulent Flow and Heat Transfer in a Porous Layer,” ASME J. Fluids Eng., 117, pp. 181–188.
Travkin,  V. S., and Catton,  I., 1998, “Porous Media Transport Descriptions- Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties,” Adv. Colloid Interface Sci., 76-77, pp. 389–443.
Travkin, V. S., Hu, K., and Catton, I., 1999, “Turbulent Kinetic Energy and Dissipation Rate Equation Models for Momentum Transport in Porous Media,” Proc. 3rd ASME/JSME Joint Fluids Engineering Conference (on CD-ROM), Paper FEDSM99-7275, San Francisco, California, 18–23 July.
Pedras, M. H. J., and de Lemos, M. J. S., 1998, “Results for Macroscopic Turbulence Modeling for Porous Media,” Proc. of ENCIT98-7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1272–1277, Rio de Janeiro, Brazil, November 3-6 (in Portuguese).
Pedras, M. H. J., and de Lemos, M. J. S., 1999, On Volume and Time Averaging of Transport Equations for Turbulent Flow in Porous Media, Proc. of 3rd ASME/JSME Joint Fluids Engineering Conferernce (on CDROM), ASME-FED-248, Paper FEDSM99-7273, ISBN 0-7918-1961-2, San Francisco, CA, July 18–25.
Pedras, M. H. J., and de Lemos, M. J. S., 1999; “Macroscopic Turbulence Modeling for Saturated Porous Media,” Proc. of COBEM99-15th Braz. Congr. Mech. Eng. (on CD-ROM), ISBN: 85-85769-03-3, Águas de Lindóia, São Paulo, Brazil, November 22–26 (in Portuguese).
Pedras,  M. H. J., and de Lemos,  M. J. S., 2000, “On the Definition of Turbulent Kinetic Energy for Flow in Porous Media,” Int. Commun. Heat Mass Transfer, 27, No. 2, pp. 211–220.
de Lemos, M. J. S., and Pedras, M. H. J. 2000, “Modeling Turbulence Phenomena in Incompressible Flow Through Saturated Porous Media,” Proc. of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-I463CD, Paper NHTC2000-12120, ISBN:0-7918-1997-3, Pittsburgh, PA, August 20-22.
Pedras,  M. H. J., and de Lemos,  M. J. S., 2001, “Macroscopic Turbulence Modeling for Incompressible Flow Through Undeformable Porous Media,” Int. J. Heat Mass Transf., 44, No. 6, pp. 1081–1093.
Rocamora Jr., F. D., and de Lemos, M. J. S., 1998, “Numerical Solution of Turbulent Flow in Porous Media Using a Spatially Periodic Array and the k-ε Model,” Proc. ENCIT-98 - 7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1265–1271, Rio de Janeiro, RJ, Brazil, November 3–6.
Pedras, M. H. J., and de Lemos, M. J. S., 2000, “Numerical Solution of Turbulent Flow in Porous Media using a Spatially Periodic Cell and the Low Reynolds k-ε Model,” Proc. of CONEM2000 - National Mechanical Engineering Congress (on CD-ROM), Natal, Rio Grande do Norte, Brazil, August 7–11 (in Portuguese).
Pedras,  M. H. J., and de Lemos,  M. J. S., 2001, “Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low Re Two-Equation Closure,” Numer. Heat Transfer, Part A, 39, No. 1, pp. 35–59.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 1999, “Simulation of Turbulent Heat Transfer in Porous Media Using a Spatially Periodic Cell and the k-ε Model,” Proc. of COBEM99 - 15th Braz. Congr. Mech. Eng. (on CD-ROM), ISBN: 86-85769-03-3, Águas de Lindóia, São Paulo, Brazil, Nov. 22–26.
Rocamora,  F. D., and de Lemos,  M. J. S., 2000, “Analysis Of Convective Heat Transfer For Turbulent Flow in Saturated Porous Media,” Int. Commun. Heat Mass Transfer, 27, pp. 825–834.
Rocamora Jr., and de Lemos, M. J. S., 2001, “Turbulence Modeling For Non-Isothermal Flow in Undeformable Porous Media,” Proc. of NHTC’01, 35th National Heat Transfer Conference,ASME-HTD-I495CD , Paper NHTC2001-20178, ISBN: 0-7918-3527-8 , Anaheim, California, June 10–12.
de Lemos, M. J. S., and Pedras, M. H. J., 2000, “Simulation of Turbulent Flow Through Hybrid Porous Medium-Clear Fluid Domains,” Proc. of IMECE2000-ASME-Intern. Mech. Eng. Congr., ASME-HTD-366-5, pp. 113–122, ISBN:0-7918-1908-6, Orlando, FL, November 5–10.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, Prediction of Velocity and Temperature Profiles for Hybrid Porous Medium-Clean Fluid Domains, “Proc. of CONEM2000—National Mechanical Engineering Congress (on CD-ROM), Ntal, Rio Grande do Norte, Brazil, August 7–11.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Laminar Recirculating Flow And Heat Transfer In Hybrid Porous Medium-Clear Fluid Computational Domains,” Proc. of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-I463CD, Paper NHTC2000-12317, ISBN:0-7918-1997-3, Pittsburgh, PA, August 20–22.
Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Heat Transfer In Suddenly Expanded Flow in a Channel With Porous Inserts,” Proc. of IMECE2000 - ASME - Intern. Mech. Eng. Congr., ASME-HTD-366-5, pp. 191–195, ISBN:0-7918-1908-6, Orlando, FL, November 5–10.
Pedras, M. H. J., and de Lemos, M. J. S., 1998, “Analysis of Flow in Porous Media Via Volumetric Averaging of the Navier-Stokes Equations,” Proc. of ENCIT98- 7th Braz. Cong. Eng. Th. Sci., Vol. 2, pp. 1278–1283, Rio de Janiero, Brazil, November 3–6 (in Portuguese).
Macdonald,  I. F., El-Sayed,  M. S., Mow,  K., and Dullien,  F. A. L., 1979, “Flow Through Porous Media: The Ergun Equation Revisited,” Indust. Chem. Fundam. 18, pp. 199–208.
Kececiooglu,  I., and Jiang,  Y., 1994, “Flow Through Porous Media of Packed Spheres Saturated With Water,” ASME J. Fluids Eng., 116, pp. 164–170.
Lage, J. L., 1998, “The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence,” in Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science Ltd., ISBN: 0-08-042843-6, 446 pgs.
de Lemos, M. J. S., and Pedras M. H. J., 2001, “Alternative Transport Equations for Turbulent Kinetic Energy for Flow in Porous Media,” Prof. of NHTC01, 35th Nat. Heat Transfer Conf. ASME-HTD-I49SCD Paper NHTC01-20177, ISBN: 0-7918-3527-8, Anaheim, California, June 10–12.
de Lemos, M. J. S., and Pedras, M. H. J., 2001, “Recent Mathematical Models For Turbulent Flow In Saturated Rigid Porous Media,” ASME Journal of Fluids Engineering.
Abe,  K., Nagano, and  Y., Kondoh,  T., 1992, “An Improved k-ε Model for Prediction of Turbulent Flows With Separation and Reattachment,” Trans. Jpn. Soc. Mech. Eng., Ser. B, 58, pp. 3003–3010.
Launder,  B. E., and Spalding,  D. B., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3, pp. 269–289.
Patankar, S. V., 1980, Numerical Heat Transfer And Fluid Flow, Hemisphere, New York.
Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Adjustment of a Macroscopic Turbulence Model for a Porous Medium Formed by an Infinite Array of Elliptic Rods, 2nd International Conference on Computational Heat and Mass Transfer, Rio de Janeiro, Brazil, October 22–26.
Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Solução Numérica do Escoamento Turbulento num Meio Poroso Formado por Hastes Elı́pticas - Aplicação do Modelo k-ε Para baixo e Alto Reynolds,” Proc of COBEMOI - 16th Braz. Congr. Mech. Eng., (on CDROM) Uberla⁁ndia, MG, Brazil, November 26–30.

Figures

Grahic Jump Location
Periodic cell and elliptically generated grid (a/b=5/3)
Grahic Jump Location
Microscopic velocity field (ReH=1.67×105): a) ϕ=0.53, b) ϕ=0.70 e c) ϕ=0.85
Grahic Jump Location
Microscopic pressure field (ReH=1.67×105): a) ϕ=0.53, b) ϕ=0.70 e c) ϕ=0.85
Grahic Jump Location
Microscopic fields for k(ReH=1.67×105): a) ϕ=0.53, b) ϕ=0.70 e c) ϕ=0.85
Grahic Jump Location
Microscopic field for ε (ReH=1.67×105): a) ϕ=0.53, b) ϕ=0.70 e c) ϕ=0.85
Grahic Jump Location
Effect of Reynolds number, ReH, on nondimensional pressure gradient
Grahic Jump Location
Determination of value for ck using data for different porous media, porosity and Reynolds number
Grahic Jump Location
Development of nondimensional turbulence kinetic energy
Grahic Jump Location
Development of nondimensional dissipation rate

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In