Armaly, B., Durst, F., Pereira, J. C. F., and Schonung, B., 1983, “Experimental and Theoretical Investigation of a Backward-Facing Step,” J. Fluid Mech., 127, pp. 473–496.

[CrossRef]Kaiktsis, L., Karniadakis, G. E., and Orszag, S. A., 1991, “Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow Over a Backward-Facing Step,” J. Fluid Mech., 231, pp. 501–528.

[CrossRef]Sagaut, P., 1998, *Large Eddy Simulation for Incompressible Flows*, Springer, Berlin.

Friedrich, R., and Arnal, M., 1990, “Analysing Turbulent Backward-Facing Step Flow With the Lowpass-Filtered Navier–Stokes Equations,” J. Wind Eng. Ind. Aerodyn., 35, pp. 101–128.

[CrossRef]Akselvoll, K., and Moin, P., 1993, “Large Eddy Simulation of a Backward Facing Step Flow,” *Engineering Turbulence Modelling and Experiments 2*, W.Rodi, and F.Martelli, eds., Elsevier, Amsterdam, The Netherlands, pp. 289–309.

Le, H., Moin, P., and Kim, J., 1997, “Direct Numerical Simulation of Flow Over a Backward-Facing Step,” J. Fluid Mech., 330, pp. 349–374.

[CrossRef]Jovic, S., and Driver, D. M., 1994, “Backward-Facing Step Measurement at Low Reynolds Number, Reh=5000,” NASA Technical Memorandum 108807, Washington, DC.

Jovic, S., and Driver, D. M., 1995, “Reynolds Number Effects on the Skin Friction in Separated Flows Behind a Backward Facing Step,” Exp. Fluids, 18, pp. 464–467.

[CrossRef]McNamara, G. R., and Zanetti, G., 1988, “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata,” Phys. Rev. Lett., 61, pp. 2332–2335.

[CrossRef] [PubMed]He, X., and Luo, L.-S., 1997, “A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E, 55, pp. R6333–R6336.

[CrossRef]Chen, S., and Doolen, G., 1998, “Lattice Boltzmann Method for Fluid Flows,” Ann. Rev. Fluid Mech., 30, pp. 329–364.

[CrossRef]Succi, S., 2001, *The Lattice Boltzmann Equation for Fluid Dynamics and Beyond*, Clarendon, Oxford, UK.

Luo, L.-S., 2000, “Theory of the Lattice Boltzmann Method: Lattice Boltzmann Models for Nonideal Gases,” Phys. Rev. E, 62, pp. 4982–4996.

[CrossRef]He, X., and Doolen, G., 2002, “Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows,” J. Stat. Phys., 107, pp. 309–328.

[CrossRef]Asinari, P., 2006, “Semi-Implicit-Linearized Multiple-Relaxation-Time Formulation of Lattice Boltzmann Schemes for Mixture Modeling,” Phys. Rev. E, 73, p. 056705.

[CrossRef]Junk, M., Klar, A., and Luo, L.-S., 2005, “Asymptotic Analysis of the Lattice Boltzmann Equation,” J. Comput. Phys., 210, pp. 676–704.

[CrossRef]Bhatnagar, P. L., Gross, E., and Krook, M., 1954, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev., 94, pp. 511–525.

[CrossRef]Qian, Y., d'Humières, D., and Lallemand, P., 1992, “Lattice BGK Models for Navier–Stokes Equation,” Europhys. Lett., 17, pp. 479–484.

[CrossRef]Chen, H., Chen, S., and Matthaeus, W. H., 1992, “Recovery of the Navier–Stokes Equations Using the Lattice-Gas Boltzmann Method,” Phys. Rev. A, 45, pp. R5339–R5342.

[CrossRef] [PubMed]d‘Humières, D., 1992, “Generalized Lattice Boltzmann Equations,” *Rarefied Gas Dynamics: Theory and Simulations, Progress in Aeronautics and Astronautics*, Vol. 159, B. D.Shigal, and D. P.Weaver, eds., AIAA, Washington, DC, pp. 450–458.

Lallemand, P., and Luo, L.-S., 2000, “Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability,” Phys. Rev. E, 61, pp. 6546–6562.

[CrossRef]d‘Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L.-S., 2002, “Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions,” Philos. Trans. R. Soc. London, Ser. A, 360, pp. 437–451.

[CrossRef]Premnath, K. N., and Abraham, J., 2007, “Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow,” J. Comput. Phys., 224, pp. 539–559.

[CrossRef]Pattison, M. J., Premnath, K. N., Morley, N. B., and Abdou, M. A., 2008, “Progress in Lattice Boltzmann Methods for Magnetohydrodynamic Flows Relevant to Fusion Applications,” Fusion Eng. Des., 83, pp. 557–572.

[CrossRef]Premnath, K. N., Pattison, M. J., and Banerjee, S., 2009, “Generalized Lattice Boltzmann Equation With Forcing Term for Computation of Wall Bounded Turbulent Flows,” Phys. Rev. E, 79, p. 026703.

[CrossRef]Ginzbourg, I., and Adler, P. M., 1994, “Boundary Flow Condition Analysis for the Three-Dimensional Lattice Boltzmann Model,” J. Phys. II, 4, pp. 191–214.

[CrossRef]Ginzburg, I., and d'Humieres, D., 2003, “Multireflection Boundary Conditions for Lattice Boltzmann Models,” Phys. Rev. E, 68, p. 066614.

[CrossRef]Pan, C., Luo, L.-S., and Miller, C. T., 2006, “An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation,” Comput. Fluids, 35, pp. 898–909.

[CrossRef]Luo, L.-S., Liao, W., Chen, X., Peng, Y., and Zhang, W., 2011, “Numerics of the Lattice Boltzmann Method: Effects of Collision Models on the Lattice Boltzmann Simulations,” Phys. Rev. E, 83, p. 056710.

[CrossRef]Ladd, A. J. C., and Verberg, R., 2001, “Lattice-Boltzmann Simulations of Particle-Fluid Suspensions,” J. Stat. Phys., 104, pp. 1191–1251.

[CrossRef]Succi, S., Karlin, I., and Chen, H., 2002, “Role of the H Theorem in Lattice Boltzmann Hydrodynamic Simulations,” Rev. Mod. Phys., 74, pp. 1203–1220.

[CrossRef]Yu, D., Mei, R., Luo, L.-S., and Shyy, W., 2003, “Viscous Flow Computations With the Method of Lattice Boltzmann Equation,” Prog. Aerosp. Sci., 39, pp. 329–367.

[CrossRef]Nourgaliev, R. R., Dinh, T. T., Theofanous, T. G., and Joseph, D., 2003, “The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications,” Int. J. Multiphase Flow, 29, pp. 117–169.

[CrossRef]Premnath, K. N., McCracken, M. E., and Abraham, J., 2005, “A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays,” SAE, Technical Paper No. 2005-01-0996.

[CrossRef]Aidun, C., and Clausen, J. R., 2010, “Lattice-Boltzmann Method for Complex Flows,” Ann. Rev. Fluid Mech., 42, pp. 439–472.

[CrossRef]Luo, L.-S., Krafczyk, M., and Shyy, W., 2010, “Lattice Boltzmann Method for Computational Fluid Dynamics,”

*Encyclopedia of Aerospace Engineering*, pp. 651–660.

[CrossRef]Ansumali, S., Karlin, I., and Succi, S., 2004, “Kinetic Theory of Turbulence Modelling: Smallness Parameter, Scaling and Microscopic Derivation of Smagorinsky Model,” Physica A, 338, pp. 379–394.

[CrossRef]Chen, H., Orszag, S., Staroselsky, I., and Succi, S., 2004, “Expanded Analogy Between Boltzmann Kinetic Theory of Fluids and Turbulence,” J. Fluid Mech., 519, pp. 301–314.

[CrossRef]Malaspinas, O., and Sagaut, P., 2012, “Consistent Subgrid Scale Modelling for Lattice Boltzmann Methods,” J. Fluid Mech., 700, pp. 514–542.

[CrossRef]Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., and Yakhot, V., 2003, “Extended Boltzmann Kinetic Equation for Turbulent Flows,” Science301, pp. 633–636.

[CrossRef] [PubMed]Smagorinsky, J., 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91, pp. 99–164.

[CrossRef]Hou, S., Sterling, J., Chen, S., and Doolen, G. D., 1996, “A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows,” *Pattern Formation and Lattice Gas Automata*, A. T. Lawniczak, and R. Kapral, eds., American Mathematical Society, Providence, RI, pp. 151–166.

Krafczyk, M., Tolke, J., and Luo, L.-S., 2003, “Large-Eddy Simulations With a Multiple-Relaxation-Time LBE Model,” Int. J. Mod. Phys. B, 17, pp. 33–39.

[CrossRef]Yu, H., Luo, L.-S., and Girimaji, S., 2006, “LES of Turbulent Square Jet Flow Using an MRT Lattice Boltzmann Model,” Comput. Fluids, 35, pp. 957–965.

[CrossRef]van Driest, E., 1956, “On Turbulent Flow Near a Wall,” J. Aeronaut. Sci., 23, pp. 1007–1011.

[CrossRef]Dong, Y.-H., Sagaut, P., and Marie, S., 2008, “Inertial Consistent Subgrid Model for Large-Eddy Simulation Based on the Lattice Boltzmann Method,” Phys. Fluids, 20, p. 035104.

[CrossRef]Weickert, M., Teike, G., Schmidt, O., and Sommerfeld, M., 2010, “Investigation of the LES WALE Turbulence Model Within the Lattice Boltzmann Framework,” Comput. Math. Appl., 59, pp. 2200–2214.

[CrossRef]Stiebler, M., Krafczyk, M., Freudiger, S., and Geier, M., 2011, “Lattice Boltzmann Large Eddy Simulation of Subcritical Flows Around a Sphere on Non-Uniform Grids,” Comput. Math. Appl., 61, pp. 3475–3484.

[CrossRef]Freitas, R. K., Henze, A., Meinke, M., and Schröder, W., 2011, “Analysis of Lattice-Boltzmann Methods for Internal Flows,” Comput. Fluids, 47, pp. 115–121.

[CrossRef]Germano, M., Piomelli, U., Moin, P., and Cabot, W., 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A, 3, pp. 1760–1765.

[CrossRef]Premnath, K. N., Pattison, M. J., and Banerjee, S., 2009, “Dynamic Subgrid Scale Modeling of Turbulent Flows Using Lattice-Boltzmann Method,” Physica A, 388, pp. 2640–2658.

[CrossRef]Wu, H., Wang, J., and Tao, Z., 2011, “Passive Heat Transfer in a Turbulent Channel Flow Simulation Using Large Eddy Simulation Based on the Lattice Boltzmann Method Framework,” Int. J. Heat Fluid Flow, 32, pp. 1111–1119.

[CrossRef]Qian, Y. H., Succi, S., Massaioli, F., and Orszag, S. A., 1996, “A Benchmark for Lattice BGK Model: Flow Over a Backward-Facing Step,” *Pattern Formation and Lattice Gas Automata*, A. T. Lawniczak, and R. Kapral, eds., American Mathematical Society, Providence, RI, pp. 207–215.

Chapman, S., and Cowling, T. G., 1964, *Mathematical Theory of Nonuniform Gases*, Cambridge University, Cambridge, England.

Lilly, D., 1992, “A Proposed Modification of the Germano Subgrid-Scale Closure Method,” Phys. Fluids A, 4, pp. 633–635.

[CrossRef]He, X., Luo, L.-S., and Dembo, M., 1996, “Some Progress in the Lattice Boltzmann Method—Part 1: Non-Uniform Mesh Grids,” J. Comput. Phys., 129, pp. 357–363.

[CrossRef]Filippova, O., and Hänel, D., 1998, “Grid Refinement for Lattice-BGK Models,” J. Comput. Phys., 147, pp. 219–228.

[CrossRef]Yu, D., Mei, R., and Shyy, W., 2002, “A Multi-Block Lattice Boltzmann Method for Viscous Fluid Flows,” Int. J. Numer. Methods Fluids, 39, pp. 99–120.

[CrossRef]Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R., 2006, “Grid Refinement in Lattice Boltzmann Methods Based on Volumetric Formulation,” Physica A, 362, pp. 158–167.

[CrossRef]Rohde, M., Kandhai, D., Derksen, J. J., and van den Akker, H. E. A., 2006, “A Generic, Mass Conservative Local Grid Refinement Technique for Lattice-Boltzmann Schemes,” Int. J. Numer. Methods Fluids, 51, pp. 439–468.

[CrossRef]Dupuis, A., and Chopard, B., 2003, “Theory and Applications of an Alternative Lattice Boltzmann Grid Refinement Algorithm,” Phys. Rev. E, 67, p. 066707.

[CrossRef]Rohde, M., Derksen, J. J., and van den Akker, H. E. A., 2008, “An Applicability Study of Advanced Lattice-Boltzmann Techniques for Moving, No-Slip Boundaries and Local Grid Refinement,” Comput. Fluids, 37, pp. 1238–1252.

[CrossRef]Spalart, P. R., 1987, “Direct Simulation of a Turbulent Boundary Layer Up to Rθ=1410,” J. Fluid Mech., 187, pp. 61–98.

[CrossRef]Ladd, A. J. C., 1994, “Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation—Part 1: Theoretical Foundation,” J. Fluid Mech., 271, pp. 285–309.

[CrossRef]Dubois, F., Lallemand, P., and Tekitek, M., 2010, “On a Superconvergent Lattice Boltzmann Boundary Scheme,” Comput. Math. Appl., 59, pp. 2141–2149.

[CrossRef]Pope, S., 2000, *Turbulent Flows*, Cambridge University, Cambridge, England.

Gullbrand, J., and Chow, F. K., 2003, “The Effect of Numerical Errors and Turbulence Models in Large-Eddy Simulations of Channel Flow, With and Without Explicit Filtering,” J. Fluid Mech., 495, pp. 323–341.

[CrossRef]Lee, S., Lele, S. K., and Moin, P., 1992, “Simulation of Spatially Evolving Turbulence and the Applicability of Taylor's Hypothesis in Compressible Flow,” Phys. Fluids, 4, pp. 1521–1530.

[CrossRef]Batten, P., Goldberg, U., and Chakravarty, S., 2004, “Interfacing Statistical Turbulence Closures With Large-Eddy Simulation,” AIAA J., 42, pp. 485–492.

[CrossRef]Keating, A., Piomelli, U., Balaras, E., and Kaltenbach, H.-J., 2004, “

*A Priori* and

*a Posteriori* Tests of Inflow Conditions for Large-Eddy Simulation,” Phys. Fluids, 16, pp. 4696–4712.

[CrossRef]Lund, T. S., Wu, X., and Squires, K. D., 1998, “Generation of Inflow Data for Spatially Developing Boundary Layer Simulations,” J. Comput. Phys., 140, pp. 233–258.

[CrossRef]Spille–Kohoff, A., and Kaltenbach, H.-J., 2001, “Generation of Turbulent Inflow Data With a Prescribed Shear-Stress Profile,” 3rd AFOSR International Conference on DNS/LES, C.Liu, L.Sakell, and T.Beutner, eds., Greyden Press, Columbus, OH.

Terracol, M., 2006, “A Zonal RANS/LES Approach for Noise Sources Prediction,” Flow, Turbul. Combust., 77, pp. 161–184.

[CrossRef]Sandham, N. D., Yao, Y. F., and Lawal, A. A., 2003, “Large-Eddy Simulation of Transonic Turbulent Flow Over a Bump,” Int. J. Heat Fluid Flow, 24, pp. 584–595.

[CrossRef]Liu, M., Chen, X.-P., and Premnath, K. N., 2012, “Comparative Study of the Large Eddy Simulations With the Lattice Boltzmann Method Using the Wall-Adapting Local Eddy-Viscosity and Vreman Subgrid Scale Models,” Chinese Phys. Lett., 29, p. 104706.

[CrossRef]Nicoud, F., and Ducros, F., 1999, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor,” Flow, Turbul. Combust., 62, pp. 183–200.

[CrossRef]