Savchenko, Y. N., Vlasenko, Y. D., and Semenenko, V. N., 1999, “Experimental Study of High-Speed Cavitated Flows,” Int. J. Fluid Mech. Res., 26(3), pp. 365–374.

Vlasenko, Y. D., 2003, “Experimental Investigation of Supercavitation Flow Regimes at Subsonic and Transonic Speeds,” Proceedings of the 5th International Symposium on Cavitation, Osaka, Japan, Paper No. Cav03-GS-6-006, pp. 1–8.

Hrubes, J. D., 2001, “High-Speed Imaging of Supercavitation Underwater Projectiles,” Exp. Fluids, 30(1), pp. 57–64.

[CrossRef]Martin, W., Travis, J. S., and Roger, E. A., 2003, “Experimental Study of a Ventilated Supercavitating Vehicle,” Proceedings of the 5th International Symposium on Cavitation, Osaka, Japan, Paper No. Cav03-OS-7-008, pp. 1–7.

Kuklinski, R., Henoch, C., and Castano, J., 2001, “Experimental Study of Ventilated Cavities on Dynamic Test Model,” Proceedings of the 4th International Symposium on Cavitation, Pasadena, CA, Paper No. Cav01-B3-004, pp. 1–8.

Savchenko, Y. N., and Semenenko, V. N., 1998, “The Gas Absorption Into Supercavity From Liquid-Gas Bubble Mixture,” Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, pp. 49–53.

Michel, J. M., 2001, “Oscillations of Ventilated Cavities: Experimental Aspects,” *VKI Special Course on Supercavitating Flows*, Brussels, Belgium, pp. 29–41.

Feng, X.-M., Lu, C.-J., and Hu, T.-Q., 2002, “Experimental Research on a Supercavitating Slender Body of Revolution With Ventilation,” J. Hydrodyn., 14(2), pp. 17–23.

Feng, X.-M., Lu, C.-J., and Hu, T.-Q., 2005, “The Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body,” J. Hydrodyn., 17(1), pp. 87–91.

Zhang, X.-W., Wei, Y.-J., and Zhang, J.-Z., 2007, “Experimental Research on the Shape Characters of Natural and Ventilated Supercavitation,” J. Hydrodyn., 19(5), pp. 564–571.

[CrossRef]Lee, Q.-T., Xue, L.-P., and He, Y.-S., 2008, “Experimental Study of Ventilated Supercavities With a Dynamic Pitching Model,” J. Hydrodyn., 20(4), pp. 456–460.

[CrossRef]Wang, G., Senocak, I., Shyy, W., Ikohagi, T., and Cao, S., 2001, “Dynamics of Attached Turbulent Cavitating Flows,” Prog. Aerosp. Sci., 37, pp. 551–581.

[CrossRef]Passandideh-Fard, M., and Roohi, E., 2008, “Transient Simulations of Cavitating Flows Using a Modified Volume-of-Fluid (VOF) Technique,” Int. J. Comput. Fluid Dyn., 22(1-2), pp. 97–114.

[CrossRef]Yuan, W., Sauer, J., and Schnerr, G. H., 2001, “Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles,” J. Mech. Ind., 2, pp. 383–394.

[CrossRef]Singhal, A. K., Athavale, M. M., Li, H., and Jiang, Y., 2002, “Mathematical Basis and Validation of the Full Cavitation Model,” ASME J. Fluids Eng., 124(3), pp. 617–624.

[CrossRef]Merkle, C. L., Feng, J., and Buelow, P. E. O., 1998, “Computational Modeling of the Dynamics of Sheet Cavitation,” Proceedings of the 3rd International Symposium on Cavitation (CAV1998), Grenoble, France, pp. 307–311.

Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., and Govindan, T. R., 2000, “A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction,” Comput. Fluids, 29, pp. 849–875.

[CrossRef]Frobenius, M., Schilling, R., Bachert, R., and Stoffel, B., 2003, “Three-Dimensional Unsteady Cavitating Effects on a Single Hydrofoil and in a Radial Pump–Measurement and Numerical Simulation,” Proceedings of the 5th International Symposium on Cavitation (CAV2003), Osaka, Japan, Paper No. GS-9-004.

aus der Wiesche, S., 2005, “Numerical Simulation of Cavitation Effects Behind Obstacles and in an Automotive Fuel Jet Pump,” Heat Mass Transfer, 41(7), pp. 615–624.

[CrossRef]Efros, D. A., 1946, “Hydrodynamic Theory of Two-Dimensional Flow With Cavitation,” Dokl. Akad. Nauk SSSR, 51, pp. 267–270.

Tulin, M. P., 1964, “Supercavitating Flows—Small Perturbation Theory,” J. Ship Res., 7(3), pp. 16–37.

Cuthbert, J., and Street, R., 1964, “An Approximate Theory for Supercavitating Flow About Slender Bodies of Revolution,” Lockheed Missiles and Space Co., Sunnyvale, CA, LMSC Report No. TM81-73/39.

Chou, Y. S., 1974, “Axisymmetric Cavity Flows Past Slender Bodies of Revolution,” J. Hydronaut., 8(1), pp. 13–18.

[CrossRef]Vorus, W. S., 1991, “A Theoretical Study of the Use of Supercavitation/Ventilation for Underwater Body Drag Reduction,” VAI Technical Report, Vorus & Associates, Inc., Gregory, MI.

Kuria, I. M., Kirschner, I. N., Varghese, A. N., and Uhlman, J. S., 1997, “Compressible Cavity Flows Past Slender Non-Lifting Bodies of Revolution,” Proceedings of the ASME and JSME Fluids Engineering Annual Conference and Exhibition, Cavitation and Multiphase Flow Forum, Vancouver, BC, Paper No. FEDSM97-3262.

Uhlman, J. S., 1987, “The Surface Singularity Method Applied to Partially Cavitating Hydrofoils,” J. Ship Res., 31(2), pp. 107–124.

Uhlman, J. S., 1989, “The Surface Singularity or Boundary Integral Method Applied to Supercavitating Hydrofoils,” J. Ship Res., 33(1), pp. 16–20.

Hase, P. M., 2003, “Interior Source Methods for Planar and Axisymmetric Supercavitating Flows,” Ph.D. thesis, University of Adelaide, Adelaide, Australia.

Varghese, A. N., Uhlman, J. S., and Kirschner, I. N., 2005, “Numerical Analysis of High-Speed Bodies in Partially Cavitating Axisymmetric Flow,” ASME J. Fluids Eng., 127(1), pp. 41–54.

[CrossRef]Rashidi, I., Moin, H., Fard, Mo. P., and Fard, Ma. P., 2008, “Numerical Simulation of Partial Cavitation Over Axisymmetric Bodies VOF Method vs. Potential Flow Theory,” J. Aerosp.Sci. Technol., 5(1), pp. 23–33.

Kinnas, S. A., Mishima, S. H., and Savineau, C., 1995, “Application of Optimization Techniques to the Design of Cavitating Hydrofoils and Wings,” Proceedings of the International Symposium on Cavitation, Deauville, France.

Mishima, S. H. and Kinnas, S. A., 1995, “A Numerical Optimization Technique Applied to the Design of Two-Dimensional Cavitating Hydrofoil Sections,” J. Ship Res., 40, pp. 28–38.

Alyanak, E., Venkayya, V., Grandhi, R. V., and Penmetsa, R. C., “Variable Shape Cavitator Design for a Supercavitating Torpedo,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Dayton, OH.

Choi, J. H., Penmetsa, R. C., and Grandhi, R. V., 2005, “Shape Optimization of the Cavitator for a Supercavitating Torpedo,” Struct. Multidiscip. Optim., 29, pp. 159–167.

[CrossRef]Shafaghat, R., Hosseinalipour, S. M., Nouri, N. M., and Lashgari, I., 2008, “Shape Optimization of Two-Dimensional Cavitators in Supercavitating Flows, Using the NSGA II Algorithm,” Appl. Ocean Res., 30, pp. 305–310.

[CrossRef]Shafaghat, R., Hosseinalipour, S. M., and Lashgari, I., and Vahedgermi, A., 2011, “Shape Optimization of Axisymmetric Cavitators in Supercavitating Flows, Using the NSGA II Algorithm,” Appl. Ocean Res., 33, pp. 193–198.

[CrossRef]Kinnas, S. A., and Fine, N. E., 1993, “A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils,” J. Fluid Mech., 254, pp. 151–158.

[CrossRef]Shames, I. H., 2003, *Mechanics of Fluids*, 4th ed., McGraw-Hill, New York.

Patankar, S. V., 1980, *Numerical Heat Transfer and Fluid*, Hemisphere, Washington, DC.

Leonard, B. P., and Mokhtari, S., 1990, “ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow,” NASA Lewis Research Center, Report No. NASA-TM-102568 (ICOMP-90-12).

Franc, J., and Michel, J., 2005, *Fundamentals of Cavitation*, Springer, Dordrecht, The Netherlands.