0
Research Papers: Techniques and Procedures

Analysis of Inverse Method Applied on Sandwich Probes

[+] Author and Article Information
Emna Berrich

Département Systèmes Énergétiques
et Environnement,
École des Mines de Nantes,
GEPEA UMR-CNRS 6144,
4 rue Alfred Kastler - BP20722,
44307 Nantes Cedex 03, France;
Département de Physique,
Faculté des Sciences et des Techniques,
Université de Nantes,
2 rue de la Houssinière BP92208,
44322 Nantes, France

Fethi Aloui

ENSIAME, Laboratoire TEMPO EA 4542,
Université de Valenciennes et
du Hainaut-Cambrésis,
DF2T, Le Mont Houy,
F-59313 Valenciennes Cedex 9, France
e-mail: Fethi.Aloui@univ-valenciennes.fr

Jack Legrand

CNRS, GEPEA, UMR6144, CRTT,
Lunam Université,
BP 406, 44602
Saint-Nazaire Cedex, France

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received February 24, 2011; final manuscript received October 15, 2012; published online December 21, 2012. Assoc. Editor: Meng Wang.

J. Fluids Eng 135(1), 011401 (Dec 21, 2012) (8 pages) Paper No: FE-11-1087; doi: 10.1115/1.4007888 History: Received February 24, 2011; Revised October 15, 2012

Parallel plate disks (PPD) are often used for analyzing the effect of small amplitude oscillations with different frequencies. These devices allow the imposing of a well-known flow kinematics. Mass transfer problems and, particularly, convection-diffusion problems relating wall shear rate to mass transfer can thus be studied. Mass transfer signals can be determined from a sandwich electrodiffusion (ED) sensor frequency response. The experimental database constructed was used to check the inverse method. Indeed, the inverse method (Rehimi et al., 2006, “Inverse Method for Electrochemical Diagnostics of Flows,” Int. J. Heat Mass Transfer, 49, pp. 1242–1254) applied on a sandwich ED sensor was analyzed by comparing its instantaneous numerical wall shear rates to the known local and instantaneous experimental wall shear rate. Oscillatory flows amplitudes, frequencies effects, and flow direction effect have been studied in order to test the robustness of the inverse method to such effects. The little difference between experimental and numerical results is probably caused by the sensitivity of the sandwich sensor to such flow directions or to the neglecting of the insulating gap effect on the inverse method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Reiss, L. P., and Hanratty, T. J., 1963, “An Experimental Study of the Viscous Sublayer,” AIChE J., 2, pp. 154–160. [CrossRef]
Lebouché, M., 1968, “Contribution à l’étude des Mouvements Turbulents des Liquides par la Méthode Polarographique,” Ph.D. thesis, University of Nancy, France.
Selman, J. R., and Tobias, C. W., 1978, “Mass-Transfer Measurements by the Limiting-Current Technique,” Advances in Chemical Engineering, Vol. 10, T. B.Drew, G. R.Cokelet, J. V.Hoopes, Jr., and T.Vermeulen, eds., Academic, New York, pp. 211–318.
Souhar, M., 1982, “Contribution à l’étude Dynamique des Écoulements Diphasiques Gaz-Liquide en Conduite Verticale: Cas des Régimes à Bulles et à Poches,” Ph.D. thesis, INPL, Nancy, France.
Sobolik, V., Wein, O., and Wichterle, K., 1996, “Transient Technique in Electrodiffusion Measurements,” Proc. of 4th Electro. Diffusion Workshop, Lahnstein.
Lévêque, M. A., 1928, “Les Lois de Transmission de la Chaleur par Convection,” Ann. Mines, 13, pp. 381–412.
Hanratty, T. J., and Campbell, J. A., 1983, “Measurement of Wall Shear Stress,” Fluid Mechanics Measurements, R. J.Goldstein, ed., Hemisphere, Washington.
Deslouis, C., Gil, O., and Tribollet, B., 1990, “Frequency Response of Electrochemical Sensors to Hydrodynamic Fluctuations,” J. Fluid Mech., 215, pp. 85–100. [CrossRef]
Wein, O., Sobolík, V., and Tihon, J., 1997, “Dynamics of Electrodiffusion Friction Probes. II. Shape-Dependent Impedance,” Collect. Czech. Chem. Commun., 62, pp. 420–441. [CrossRef]
Sobolík, V., Wein, O., and Čermák, J., 1987, “Simultaneous Measurement of Film Thickness and Wall Shear Stress in Wavy Flow of Non-Newtonian Liquids,” Collect. Czech. Chem. Commun., 52, pp. 913–928. [CrossRef]
Py, B., and Gosse, J., 1969, “Sur la Realization d'une Sonde Polarographique Sensible à la Vitesse et à la Direction de l’écoulement,” C. R. Acad. Sci. Paris, 269, pp. 401–405.
Tihon, J., Tovchigrechko, V., Sobolík, V., and Wein, O., 2003, “Electrodiffusion Detection of the Near-Wall Flow Reversal in Liquid Films at the Regime of Solitary Waves,” J. Appl. Electrochem., 33, pp. 577–587. [CrossRef]
Gradeck, M., and Lebouché, M., 1998, “Wall Shear Measurements Inside Corrugated Channels Using the Electrochemical Technique,” Exp. Fluids, 24, pp. 17–26. [CrossRef]
Sobolik, V., and Wein, O., 1990, “Three-Segment Electrodiffusion Probes for Measuring Velocity Fields Close to a Wall,” Exp. Fluids, 9, pp. 43–48. [CrossRef]
Dumaine, J. Y., 1981, “Etude Numérique de la Réponse en Fréquence des Sondes Électrochimiques,” Lett. Heat Mass Transfer, 8, pp. 293–302. [CrossRef]
Mao, Z., and Hanratty, T. J., 1992, “Measurement of Wall Shear Rate in Large Amplitude Unsteady Flows,” Exp. Fluids, 12, pp. 342–350. [CrossRef]
Deslouis, C., Huet, F., Gil, O., and Tribollet, B., 1993, “Spectral Analysis of Wall Turbulence With a Bicircular Electrochemical Probe,” Exp. Fluids, 16, pp. 97–104. [CrossRef]
Py, B., 1973, “Etude Tridimensionnelle de la Sous-Couche Visqueuse Dans une Veine Rectangulaire par des Mesures de Transfert de Matière en Paroi,” Int. J. Heat Mass Transfer, 16, pp. 129–144. [CrossRef]
Beck, J. V., Blackwell, B., and St.-ClairC. R., 1985, Inverse Heat Conduction, Wiley, New York.
Maquinghem, T., 1999, “Métrologie Tridimensionnelle Instationnaire à l'aide de la Méthode Polarographique,” Ph.D. thesis, University of Valenciennes et du Hainaut-Cambrésis, Valenciennes, France.
Patankar, S. V., 1980, Numerical Heat Transfer Fluid Flow, Hemisphere, New York.
Rehimi, F., Aloui, F., Ben Nasrallah, S., Doubliez, L., and Legrand, J., 2006, “Inverse Method for Electrochemical Diagnostics of Flows,” Int. J. Heat Mass Transfer, 49, pp. 1242–1254. [CrossRef]
Wein, O., Sobolik, V., and Kiefmann, J., 2008, “EDWork II. The EDIK Device,” Research Report ICPF No. 2008/5.
Walters, K., 1975, Rheometry, Chapman and Hall, London.
Ellenberger, J., and Fortuin, J. M. H., 1985, “A Criterion for Purely Tangential Laminar Flow in the Cone-and-Plate Calibrator and the Parallel-Plate Calibrator,” Chem. Eng. Sci., 40(1), pp. 111–116. [CrossRef]
Wein, O., 2006, “Effect of Insulating Gaps on the Dynamics of Electrodiffusion Friction Probes II. Voltage-Step Transient and Impedance,” Research Report ICPF No. 2006/9.
Wein, O., and Wichterle, K., 2008, “Theory of Electrodiffusion Friction Probes in Microdisperse Liquids 8: Effect of Apparent Wall Slip and Insulating Gaps on the Directional Characteristics,” Research Report No. 7/2008.
Ling, S. C., 1963, “Heat Transfer From a Small Isothermal Spanwise Strip on an Insulated Boundary,” ASME J. Heat Transfer, 85(3), pp. 230–235. [CrossRef]
Geshev, P. I., and Safarova, N. S., 1999, “Angular and Transient Characteristics of Circular Electrochemical Friction Probes,” Int. J. Heat Mass Transfer, 42, pp. 3183–3188. [CrossRef]
Aloui, F., Rehimi, R., Dumont, E., and Legrand, J., 2008, “Inverse Method Applied for the Determination of the Wall Shear Stress Rate in a Scraped Surface Heat Exchanger Using the Electrochemical Technique,” Int. J. Electrochem. Sci., 3, pp. 676–690.
Barbeu, F., Sobolik, V., Martemianov, S., and Gbahoue, L., 1998, “Caractéristique Directionnelle Calculée et Mesurée d'une Sonde Électrochimique,” C. R. Mec., 330, pp. 433–436. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Experimental installation (r is the probe position (m), h is the gap thickness between the two disks (m), R is the disk radius (m))

Grahic Jump Location
Fig. 2

Mathematical concept schema of a sandwich probe composed of two rectangular segments separated by an isolated gap. (a) Global view. (b) View of the two segments separated by the isolated gap.

Grahic Jump Location
Fig. 3

Effect of insulating gap—diffusion effect

Grahic Jump Location
Fig. 4

Sampling of diagrams of the current intensities of each segment of the double probe for polarization voltage Up (25 mol/m3 of ferri-ferrocyanide of potassium, 230 mol/m3 of K2SO4, S = 22 s−1)

Grahic Jump Location
Fig. 5

Frequency response of a sandwich sensor to sinusoidal harmonic flow fluctuations: sampling of current intensities of each segment of the double probe

Grahic Jump Location
Fig. 6

Sampling of dimensionless primary experimental instantaneous Sherwood number and filtered one for Pe = 67, A = 20%, F = 8 Hz, and θ = 0 deg

Grahic Jump Location
Fig. 7

Sampling of dimensionless primary experimental instantaneous wall shear rate and filtered one for Pe = 67, A = 20%, F = 8 Hz, and θ = 0 deg

Grahic Jump Location
Fig. 8

Phase lag between experimental instantaneous mass transfer and wall shear rate for Pe = 67, A = 20%, F = 8 Hz, and θ = 0 deg

Grahic Jump Location
Fig. 9

(a) Time evolution of the Sherwood number obtained by the direct method and compared to the experimental one for Pe = 67, A = 40%, F = 4 Hz, and θ = 0 deg. (b) Time evolution of the wall shear rate obtained by the inverse method compared to the experimental one for Pe = 67, A = 40%, F = 4 Hz, and θ = 0 deg.

Grahic Jump Location
Fig. 10

(a) Time evolution of the mass transfer obtained by the direct method and compared to the experimental one for Pe = 67, A = 20%, F = 8 Hz, and θ = 0 deg. (b) Time evolution of the wall shear rate obtained by the inverse method and compared to the experimental one for Pe = 67, A = 20%, F = 8 Hz, and θ = 0 deg.

Grahic Jump Location
Fig. 11

(a) Time evolution of the mass transfer obtained by the direct method and compared to the experimental one for Pe = 2234, A = 60%, F = 8 Hz, and θ = 90 deg. (b) Time evolution of the wall shear rate obtained by the inverse method and compared to the experimental one for Pe = 2234, A = 60%, F = 8 Hz, and θ = 90 deg.

Grahic Jump Location
Fig. 12

(a) Time evolution of the mass transfer obtained by the direct method and compared to the experimental one for Pe = 2234, A = 40%, F = 8 Hz, and θ = 180 deg. (b) Time evolution of the wall shear rate obtained by the inverse method and compared to the experimental one for Pe = 2234, A = 40%, F = 8 Hz, and θ = 180 deg.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In