The flow around a circular cylinder with porous material coating (PMC) is numerically investigated based on unsteady Reynolds-averaged Navier–Stokes (URANS) method at subcritical Reynolds number. The results are compared with some available results in the open literature. The interaction of PMC with the near wake of a circular cylinder such as streamline, vorticity field, and shear stress are studied in detail. Subsequently, the fluctuation forces and velocity distribution in the boundary layer are analyzed and the effect of various thicknesses of PMC is investigated. The numerical results reveal that PMC has prominently modified the flow characteristic of the near wake of circular cylinder and significantly mitigated the fluctuations of aerodynamic forces from two aspects of frequency and amplitude. It means that the vortex shedding from the bluff body is suppressed. It also is found that the thickness of the PMC is a sensitive parameter to the aerodynamic forces and velocity distribution in the boundary layer. Furthermore, the mean drag can be reduced to a certain extent when the thickness is appropriate. It is expected that the modification of flow characteristic and aerodynamic forces is closely related to the flow-induced noise reduction. Those results will be helpful to understand the mechanism of flow control on bluff body flow by using porous material coating and accumulate meaningful information for further industrial application.