von Kármán, T., 1930, “Mechanishe Änlichkeit und Turbulenz,” Proceedings of the Third International Congress on Applied Mechanics, Vol. 85, Stockholm, Sweden.

Nikuradse, J., 1932, “Laws of Turbulent Flow in Smooth Pipes,” NASA Report No. TT-F-10359.

Prandtl, L., 1933, “Recent Results of Turbulence Research,” NACA Report No. TM 720.

Millikan, C. M., 1938, “Critical Discussion of Turbulent Boundary Flows in Channels and Circular Tubes,” *Proceedings of the 5th International Congress on Applied Mechanics*, Wiley, New York, pp. 386–392.

Yuan, S. W., 1967, *Foundations of Fluid Mechanics*, Prentice-Hal, Inc., Englewood Cliffs, NJ, pp. 357–399.

Panton, R. L., 2005, *Incompressible Flow*, 3rd ed., John Wiley & Sons, Inc., New York.

Österlund, J. M., 1999, “Experimental Studies of Zero-Pressure-Gradient Turbulent Boundary-Layer Flow,” Ph.D. thesis, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden.

Österlund, J. M., Johansson, A. V., Nagib, H. M., and Hites, M. H., 2000, “A Note of The Overlap Region in a Turbulent Boundary Layer,” Phys. Fluids, 12, pp. 1–4.

[CrossRef]Kuethe, A. M., and Chow, C.-Y., 1998, *Foundations of Aerodynamics*, 5th ed., John Wiley & Sons, Inc., New York.

Van Driest, E. R., 1956, “On Turbulent Flow Near a Wall,” J. Aerosp. Sci., 23, pp. 1007–1011.

Coles, D., 1956, “The Law of The Wake in The Turbulent Boundary Layer,” J. Fluid Mech., 1, pp. 191–226.

[CrossRef]Blasius, H., 1913, “Das Ähnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten,” VDI Forschungsh., 131, pp. 1–12

Prandtl, L., 1927, “Über den Reigungswiderstand Strömender Luft,” Reports of the Aerod. Versuchsanst, Göttingen, Germany, 3rd Series.

Prandtl, L., 1931, “Zur turbulentent Stromung in Rohren und längs Platten,” Reports of the Aerod. Versuchsanst, Göttingen, Germany, 4th Series.

George, W. K., and Castillo, L., 1997, “Zero-Pressure-Gradient Turbulent Boundary Layer,” ASME Appl. Mech. Rev., 50, pp. 689–729.

[CrossRef]Wosnik, M., Castillo, L., and George, W. K., 2000, “A Theory For Turbulent Pipe and Channel Flows,” J. Fluid Mech., 421, pp. 115–145.

[CrossRef]Zagarola, M. V., and Smits, A. J., 1998, “A New Mean Velocity Scaling For Turbulent Boundary Layers,” ASME Paper No. FEDSM98-4950.

Zagarola, M. V., and Smits, A. J., 1998, “Mean-Flow Scaling of Turbulent Pipe Flow,” J. Fluid Mech., 373, pp. 33–79.

[CrossRef]Barenblatt, G. I., 1993, “Scaling Laws For Fully Developed Shear Flow. Part 1 Basic Hypotheses and Analysis,” J. Fluid Mech., 248, pp. 513–520.

[CrossRef]Buschmann, M. H., and Gad-el-Hak, M., 2003, “Debate Concerning The Mean-Velocity Profile of a Turbulent Boundary Layer,” AIAA J., 41(4), pp. 565–572.

[CrossRef]Pope, S. B., 2000, *Turbulent Flows*, Cambridge University Press, Cambridge, UK.

Wei, T., Fife, P., Klewicki, J., and McMurtry, P., 2004, “Properties of The Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows,” J. Fluid Mech., 522, pp. 303–327.

[CrossRef]Buschmann, M. H., 2006, “Structure of The Canonical Turbulent Wall-Bounded Flow,” AIAA J., 44(11), pp. 2500–2503.

[CrossRef]Klewicki, J. C., Foss, J. F., and Wallace, J. M., 1998, *Flow at Ultra-High Reynolds and Rayleigh Numbers*, R. J.Donnelly and
K. R.Sreenivasan, eds., Springer, New York.

De Graaff, D. B., and Eaton, J. K., 2000, “Reynolds Number Scaling of The Flat-Plate Turbulent Boundary Layer,” J. Fluid Mech., 422(31), pp. 319–346.

[CrossRef]Castillo, L., and Johansson, T. G., 2002, “The Effects of The Upstream Conditions on a Low Reynolds Number Turbulent Boundary Layer With Zero Pressure Gradient,” J. Turbul., 3, p. N31.

[CrossRef]Carlier, J., and Stanislas, M., 2005, “Experimental Study of Eddy Structures in The Turbulent Boundary Layer Using Particle Image Velocimetry,” J. Fluid Mech., 535, pp. 143–188.

[CrossRef]Nickels, T. B., Marusic, I., Hafez, S. M., and Chong, M. S., 2005, “Evidence of the

*k*^{-1} Law in a High Reynolds Number Turbulent Boundary Layer,” Phys. Rev. Lett., 95(7), p. 074501.

[CrossRef] [PubMed]Nagib, H. M., Chauhan, K. A., and Monkewitz, P. A., 2007, “Approach to an Asymptotic State for Zero-Pressure-Gradient Turbulent Boundary Layers,” Philos. Trans. R. Soc. Lond., Ser. A, 365(1852), pp. 755–770.

[CrossRef]Örlu, R., Fransson, J. H. M., and Alfredsson, P. H., 2010, “On Near Wall Measurements of Wall Bounded Flows - The Necessity of an Accurate Determination of the Wall Position,” Prog. Aerosp. Sci., 46(8), pp. 353–387.

[CrossRef]Wu, X., and Moin, P., 2009, “Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer,” J. Fluid Mech., 630, pp. 5–41.

[CrossRef]Schlatter, P., and Örlu, R., 2010, “Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers,” J. Fluid Mech., 659, pp. 116–126.

[CrossRef]Araya, G., Castillo, L., Meneveau, C., and Jansen, K., 2011, “A Dynamic Multi-Scale Approach for Turbulent Inflow Boundary Conditions in Spatially Developing Flows,” J. Fluid Mech., 670, pp. 581–605.

[CrossRef]Schlichting, H., 1968, *Boundary-Layer Theory*, McGraw Hill, New York, pp. 635–667.

Rusak, Z., and Meyerholz, J., 2006, “Mean Velocity of Fully-Developed Turbulent Pipe Flows,” AIAA J., 44(11), pp. 2793–2797.

[CrossRef]Butcher, J. C., 2003, *Numerical Methods for Ordinary Differential Equations*, Wiley, New York.

Smith, D. W., and Walker, J. H., 1959, “Skin-Friction Measurements in Incompressible Flow,” NACA Report No. R 26.

George, W. K., 2006, “Recent Advancements Toward the Understanding of Turbulent Boundary Layers,” AIAA J., 44(11), pp. 2435–2449.

[CrossRef]Nikuradse, J., and Reichardt, H., 1945, “Heat Transfer Through Turbulent Friction Layers,” NACA Report No. TM 1047.

East, L. F., Sawyer, W. G., and Nash, C. R., 1979, “An Investigation of the Structure of Equilibrium Turbulent Boundary Layers,” RAE Technical Report No. 79040.

Clauser, F., 1954, “Turbulent Boundary Layers in Adverse Pressure Gradients,” J. Aeronaut. Sci., 21, pp. 91–108.

[CrossRef]Coles, D. E., and Hirst, E. A., 1968, “Computation of Turbulent Boundary Layers,” *Proceedings of the AFOSR-IFP Stanford Conference on Turbulent Boundary-Layer Prediction*, Vol. 2, Thermosciences Divisions, Stanford University, Stanford, CA.

McKeon, B. J., Li, J., Jiang, W., Morrison, J. F., and Smits, A. J., 2004, “Further Observations on the Mean Velocity Distribution in Fully Developed Pipe Flow,” J. Fluid Mech., 501, pp. 135–147.

[CrossRef]Perry, A. E., Hafez, S., and Chong, M. S., 2001, “A Possible Reinterpretation of the Princeton Superpipe Data,” J. Fluid Mech., 439, pp. 395–401.

[CrossRef]Inoue, M., and Pullin, D. I., 2011, “Large-Eddy Simulation of the Zero-Pressure-Gradient Turbulent Boundary Layer Up to Re

_{θ}=

*O*(10

^{12}),” J. Fluid Mech., 686, pp. 507–533.

[CrossRef]Webster, B. E., Shephard, M. S., Rusak, Z., and Flaherty, J. E., 1993, “Automated Adaptive Time-Discontinuous Finite-Element Method for Unsteady Compressible Airfoil Aerodynamics,” AIAA J., 32(4), pp. 748–757.

[CrossRef]