McCoy, B. J., and Rolston, D. E., 1992, “Convective-Transport of Gases in Moist Porous-Media—Effect of Absorption, Adsorption, and Diffusion in Soil Aggregates,” Environ. Sci. Technol., 26(12), pp. 2468–2476.

[CrossRef]Xu, Y., Zheng, Z. C., and Wilson, D. K., 2011, “A Computational Study of the Effect of Windscreen Shape and Flow Resistivity on Turbulent Wind Noise Reduction,” J. Acoust. Soc. Am., 129(4), pp. 1740–1747.

[CrossRef] [PubMed]Xu, Y., Zheng, Z. C., and Wilson, D. K., 2010, “Simulation of Turbulent Wind Noise Reduction by Porous Windscreens Using High-Order Schemes,” J. Comput. Acoust., 18(4), pp. 321–334.

[CrossRef]Singh, P. P., Cushman, J. H., and Maier, D. E., 2003, “Multiscale Fluid Transport Theory for Swelling Biopolymers,” Chem. Eng. Sci., 58(11), pp. 2409–2419.

[CrossRef]Montillet, A., 2004, “Flow Through a Finite Packed Bed of Spheres: A Note on the Limit of Applicability of the Forchheimer-Type Equation,” ASME J. Fluids Eng., 126(1), pp. 139–143.

[CrossRef]Vafai, K., and Hadim, H. A., 2000, *Handbook of Porous Media*, Marcel Dekker, New York.

Nakayama, A., 1995, *PC-Aided Numerical Heat Transfer and Convective Flow*, CRC Press, Boca Raton, FL.

Kuwahara, F., Kameyama, Y., Yamashita, S., and Nakayama, A., 1998, “Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array,” J. Porous Media, 1(1), pp. 47–55.

Kuwahara, F., Nakayama, A., and Koyama, H., 1994, “Numerical Modeling of Heat and Fluid Flow in a Porous Medium,” Proceedings of the 10th International Heat Transfer Conference, Brighton, Vol. 5, pp. 309–314.

Nakayama, A., Kuwahara, F., Umemoto, T., and Hayashi, T., 2002, “Heat and Fluid Flow Within an Anisotropic Porous Medium,” ASME J. Heat Transfer, 124(4), pp. 746–753.

[CrossRef]Teruel, F. E., and Rizwan-Uddin, 2009, “Characterization of a Porous Medium Employing Numerical Tools: Permeability and Pressure-Drop from Darcy to Turbulence,” Int. J. Heat Mass Transfer, 52(25–26), pp. 5878–5888.

[CrossRef]Kuwahara, F., Yamane, I., and Nakayama, A., 2006, “Large Eddy Simulation of Turbulent Flow in Porous Media,” Int. Commun. Heat Mass. Transfer, 33(4), pp. 411–418.

[CrossRef]Pedras, M. H. J., and De Lemos, M. J. S., 2001, “Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low Re Two-Equation Closure,” Numer. Heat Transfer, Part A, 39(1), pp. 35–59.

[CrossRef]Kuwahara, F., Yang, C., Ando, K., and Nakayama, A., 2011, “Exact Solutions for a Thermal Nonequilibrium Model of Fluid Saturated Porous Media Based on an Effective Porosity,” ASME J. Heat Transfer, 133(11), p. 112602.

[CrossRef]Nakayama, A., Kuwahara, F., and Sano, Y., 2007, “Concept of Equivalent Diameter for Heat and Fluid Flow in Porous Media,” AIChE J., 53(3), pp. 732–736.

[CrossRef]Nakayama, A., Kuwahara, F., and Hayashi, T., 2004, “Numerical Modelling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw,” J. Fluid Mech., 498, pp. 139–159.

[CrossRef]Nakayama, A., Kuwahara, F., and Kodama, Y., 2006, “An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium,” J. Fluid Mech., 563, pp. 81–96.

[CrossRef]Teruel, F. E., and Rizwan-Uddin, 2009, “A New Turbulence Model for Porous Media Flows. Part II: Analysis and Validation Using Microscopic Simulations,” Int. J. Heat Mass Transfer, 52(21–22), pp. 5193–5203.

[CrossRef]Teruel, F. E., and Rizwan-Uddin, 2010, “Numerical Computation of Macroscopic Turbulence Quantities in Representative Elementary Volumes of the Porous Medium,” Int. J. Heat Mass Transfer, 53(23–24), pp. 5190–5198.

[CrossRef]Kazerooni, R. B., and Hannani, S. K., 2009, “Simulation of Turbulent Flow Through Porous Media Employing a v2f Model,” Sci. Iran., Trans. B, 16(2), pp. 159–167.

Yang, X., Zheng, Z. C., Winecki, S., and Eckels, S., 2013, “Model Simulation and Experiments of Flow and Mass Transport through a Nano-Material Gas Filter,” Appl. Math. Modell., 37(20–21), pp. 9052–9062.

[CrossRef]Bhattacharyya, S., Dhinakaran, S., and Khalili, A., 2006, “Fluid Motion Around and Through a Porous Cylinder,” Chem. Eng. Sci., 61(13), pp. 4451–4461.

[CrossRef]Chen, X. B., Yu, P., Winoto, S. H., and Low, H. T., 2008, “Numerical Analysis for the Flow Past a Porous Square Cylinder Based on the Stress-Jump Interfacial-Conditions,” Int. J. Numer. Methods Heat Fluid Flow, 18(5–6), pp. 635–655.

[CrossRef]Angot, P., Bruneau, C. H., and Fabrie, P., 1999, “A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows,” Numer. Math., 81(4), pp. 497–520.

[CrossRef]Yu, P., Zeng, Y., Lee, T. S., Chen, X. B., and Low, H. T., 2012, “Numerical Simulation on Steady Flow Around and Through a Porous Sphere,” Int. J. Heat Fluid Flow, 36, pp. 142–152.

[CrossRef]Wilson, D. K., Collier, S. L., Ostashev, V. E., Aldridge, D. F., Symon, N. P., and Marlin, D. H., 2006, “Time-Domain Modeling of the Acoustic Impedance of Porous Surfaces,” Acta Acust., 92(6), pp. 965–975.

Wilson, D. K., Ostashev, V. E., Collier, S. L., Symons, N. P., Aldridge, D. F., and Marlin, D. H., 2007, “Time-Domain Calculations of Sound Interactions With Outdoor Ground Surfaces,” Appl. Acoust., 68(2), pp. 173–200.

[CrossRef]Corapcioglu, M. Y., 1991, *Advances in Porous Media*, 1st ed., Elsevier Science, New York.

Peskin, C. S., 1972, “Flow Patterns Around Heat Valves: A Numerical Method,” J. Comput. Phys., 10, pp. 252–271.

[CrossRef]Luo, H. X., Mittal, R., Zheng, X. D., Bielamowicz, S. A., Walsh, R. J., and Hahn, J. K., 2008, “An Immersed-Boundary Method for Flow-Structure Interaction in Biological Systems With Application to Phonation,” J. Comput. Phys., 227(22), pp. 9303–9332.

[CrossRef] [PubMed]Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A., and Von Loebbecke, A., 2008, “A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries,” J. Comput. Phys., 227(10), pp. 4825–4852.

[CrossRef] [PubMed]Vanella, M., Rabenold, P., and Balaras, E., 2010, “A Direct-Forcing Embedded-Boundary Method With Adaptive Mesh Refinement for Fluid-Structure Interaction Problems,” J. Comput. Phys., 229(18), pp. 6427–6449.

[CrossRef]Yang, J. M., and Balaras, E., 2006, “An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries,” J. Comput. Phys., 215(1), pp. 12–40.

[CrossRef]Mittal, R., and Iaccarino, G., 2005, “Immersed Boundary Methods,” Ann. Rev. Fluid Mech., 37, pp. 239–261.

[CrossRef]Malico, I., and Ferreira De Sousa, P. J. S., 2012, “Modeling the Pore Level Fluid Flow in Porous Media Using the Immersed Boundary Method,” *Numerical Analysis of Heat and Mass Transfer in Porous Media*, Vol. 27, J. M. P. Q.Delgado, A. G.Barbosa de Lima, and M.Vázquez da Silva, eds., Springer, New York, pp. 229–251.

Zhang, N., and Zheng, Z. C., 2007, “An Improved Direct-Forcing Immersed-Boundary Method for Finite Difference Applications,” J. Comput. Phys., 221(1), pp. 250–268.

[CrossRef]Yang, X. F., and Zheng, Z. C., 2010, “Nonlinear Spacing and Frequency Effects of an Oscillating Cylinder in the Wake of a Stationary Cylinder,” Phys. Fluids, 22(4), p. 043601.

[CrossRef]Zhang, N., and Zheng, Z. C., 2009, “Flow/Pressure Characteristics for Flow Over Two Tandem Swimming Fish,” Comput. Fluids, 38(5), pp. 1059–1064.

[CrossRef]Zhang, N., Zheng, Z. C., and Eckels, S., 2008, “Study of Heat-Transfer on the Surface of a Circular Cylinder in Flow Using an Immersed-Boundary Method,” Int. J. Heat Fluid Flow, 29(6), pp. 1558–1566.

[CrossRef]Zheng, Z. C., and Wei, Z., 2012, “Study of Mechanisms and Factors That Influence the Formation of Vortical Wake of a Heaving Airfoil,” Phys. Fluids, 24(10), p. 103601.

[CrossRef]Zheng, Z. C., and Zhang, N., 2008, “Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder,” J. Fluid Struct., 24(3), pp. 382–399.

[CrossRef]Ciani, A., Goss, K. U., and Schwarzenbach, R. P., 2005, “Determination of Molar Absorption Coefficients of Organic Compounds Adsorbed in Porous Media,” Chemosphere, 61(10), pp. 1410–1418.

[CrossRef] [PubMed]Trojakova, E., and Babusikova, J., 2012, “Contaminant Transport in Partially Saturated Porous Media,” *Numerical Analysis of Heat and Mass Transfer in Porous Media*, Vol. 27, J. M. P. Q.Delgado, A. G.Barbosa de Lima, and M.Vázquez da Silva, eds., Springer, New York, pp. 297–316.

Ansys^{®}, “Fluent, Release 14.0, Help System,” Ansys, Inc., Canonsburg, PA.

Baytas, A. C., Erdem, D., Acar, H., Cetiner, O., and Basci, H., 2012, “Analytical Determination of the Permeability for Slow Flow Past Periodic Arrays of Cylinders With Different Cross Sections,” J. Porous Media, 15(11), pp. 1009–1018.

[CrossRef]Crowe, C. T., 2012, *Multiphase Flows With Droplets and Particles*, CRC Press, Boca Raton, FL.

Bear, J., and Cheng, A. H. D., 2010, *Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media*, Springer, New York.

Patankar, S. V., 1980, *Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences*, McGraw-Hill, New York.

Patankar, S. V., Liu, C. H., and Sparrow, E. M., 1977, “Fully Developed Flow and Heat-Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area,” ASME J. Heat Transfer, 99(2), pp. 180–186.

[CrossRef]Wei, Z., and Zheng, Z. C., 2012, “Parallel Implementation and Performance of an Immersed Boundary Method,” ASME Publ. No. FEDSM2012-72318, ASME Fluids Engineering Division Summer Meeting, Puerto Rico, July 8–12.

Smith, B. F., Bjørstad, P. E., and Gropp, W., 1996, *Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations*, Cambridge University, Cambridge, UK.

McCormick, S. F., 1987, *Multigrid Methods, Frontiers in Applied Mathematics*, SIAM, Philadelphia, PA.

Ergun, S., 1952, “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., 48(2), pp. 89–94.

Martin, A. R., Saltiel, C., and Shyy, W., 1998, “Frictional Losses and Convective Heat Transfer in Sparse, Periodic Cylinder Arrays in Cross Flow,” Int. J. Heat Mass Transfer, 41(15), pp. 2383–2397.

[CrossRef]Whitaker, S., 1996, “The Forchheimer Equation: A Theoretical Development,” Transp. Porous Media, 25(1), pp. 27–61.

[CrossRef]Papathanasiou, T. D., Markicevic, B., and Dendy, E. D., 2001, “A Computational Evaluation of the Ergun and Forchheimer Equations for Fibrous Porous Media,” Phys. Fluids., 13(10), pp. 2795–2804.

[CrossRef]