The combined effect of viscosity, surface tension, and the compressibility on the nonlinear growth rate of Rayleigh-Taylor (RT) instability has been investigated. For the incompressible case, it is seen that both viscosity and surface tension have a retarding effect on RT bubble growth for the interface perturbation wave number having a value less than three times of a critical value ($kc=(\rho h-\rho l)g/T$, $T$ is the surface tension). For the value of wave number greater than three times of the critical value, the RT induced unstable interface is stabilized through damped nonlinear oscillation. In the absence of surface tension and viscosity, the compressibility has both a stabilizing and destabilizing effect on RTI bubble growth. The presence of surface tension and viscosity reduces the growth rate. Above a certain wave number, the perturbed interface exhibits damped oscillation. The damping factor increases with increasing kinematic viscosity of the heavier fluid and the saturation value of the damped oscillation depends on the surface tension of the perturbed fluid interface and interface perturbation wave number. An approximate expression for asymptotic bubble velocity considering only the lighter fluid as a compressible one is presented here. The numerical results describing the dynamics of the bubble are represented in diagrams.