Evans, D. L., and Florschuetz, L. W., 1977, “Cost Studies on Terrestrial Photovoltaic Power Systems With Sunlight Concentration,” Sol. Energy, 19, pp. 255–262.

[CrossRef]Spectrolab, Inc., and Sylmar, C. A., 1977, “Photovoltaic Systems Concept Study: Final Report,” U.S. Department of Energy, Division of Solar Energy, Springfield, VA, Report No. ALO-2748-12.

Evans, D. L., 1981, “Simplified Method for Predicting Photovoltaic Array Output,” Sol. Energy, 27(6), pp. 555–560.

[CrossRef]Aste, N., Chiesa, G., and Verri, F., 2008, “Design, Development and Performance Monitoring of a Photovoltaic-Thermal (PV/T) Air Collector,” Renewable Energy, 33(5), pp. 914–927.

[CrossRef]Fouladi, F., Henshaw, P., and Ting, D. S.-K., 2013, “Enhancing Smart Grid Realisation With Accurate Prediction of Photovoltaic Performance Based on Weather Forecast,” Int. J. Environ. Stud., 70(5), pp. 754–764.

[CrossRef]Taylor, G. I., 1935, “Statistical Theory of Turbulence,” Proc. R. Soc. London, Ser. A, 151, pp. 421–478.

[CrossRef]Hinze, J. O., 1975, *Turbulence*, 2nd ed., McGraw-Hill, New York.

Batchelor, G. K., 1948, “Energy Decay and Self-Preserving Correlation Functions in Isotropic Turbulence,” Q. Appl. Math., 6, pp. 97–116.

Batchelor, G. K., and Townsend, A. A., 1948, “Decay of Isotropic Turbulence in the Initial Period,” Proc. R. Soc. London A, 193, pp. 539–558.

[CrossRef]Batchelor, G. K., and Townsend, A. A., 1948, “Decay of Isotropic Turbulence in the Final Period,” Proc. R. Soc. London A, 194, pp. 527–543.

[CrossRef]Grant, H. L., and Nisbet, I. C. T., 1957, “The Inhomogeneity of Grid Turbulence,” J. Fluid Mech., 2(3), pp. 263–272.

[CrossRef]Grant, H. L., 1958, “The Large Eddies of Turbulent Motion,” J. Fluid Mech., 4(2), pp. 149–190.

[CrossRef]Uberoi, M. S., 1963, “Energy Transfer in Isotropic Turbulence,” Phys. Fluids, 6(8), pp. 1048–1056.

[CrossRef]Uberoi, M. S., and Wallis, S., 1966, “Small Axisymmetric Contraction of Grid Turbulence,” J. Fluid Mech., 24(3), pp. 539–543.

[CrossRef]Comte-Bellot, G., and Corrsin, S., 1966, “The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence,” J. Fluid Mech., 25(4), pp. 657–682.

[CrossRef]Uberoi, M. S., and Wallis, S., 1967, “Effect of Grid Geometry on Turbulence Decay,” Phys. Fluids, 10(6), pp. 1216–1224.

[CrossRef]Van Atta, C. W., and Chen, R., 1968, “Correlation Measurements in Grid Turbulence Using Digital Harmonic Analysis,” J. Fluid Mech., 34(3), pp. 497–515.

[CrossRef]Uberoi, M. S., and Wallis, S., 1969, “Spectra of Grid Turbulence,” Phys. Fluids, 12(7), pp. 1355–1358.

[CrossRef]Van Atta, C. W., and Chen, R., 1969, “Measurements of Spectral Energy Transfer in Grid Turbulence,” J. Fluid Mech., 38(4), pp. 743–763.

[CrossRef]Murzyn, F., and Bélorgey, M., 2005, “Experimental Investigation of the Grid-Generated Turbulence Features in a Free Surface Flow,” Exp. Therm. Fluid Sci., 29(8), pp. 925–935.

[CrossRef]Liu, R., Ting, D. S.-K., and Checkel, M. D., 2007, “Constant Reynolds Number Turbulence Downstream of an Orificed Perforated Plate,” Exp. Therm. Fluid Sci., 31(8), pp. 897–908.

[CrossRef]Llor, A., 2011, “Langevin Equation of Big Structure Dynamics in Turbulence: Landau's Invariant in the Decay of Homogeneous Isotropic Turbulence,” Eur. J. Mech. B/Fluids, 30(5) pp. 480–504.

[CrossRef]Liberzon, A., Gurka, R., Sarathi, P., and Kopp, G. A., 2012, “Estimate of Turbulent Dissipation in a Decaying Grid Turbulent Flow,” Exp. Therm. Fluid Sci., 39, pp. 71–78.

[CrossRef]George, W. K., 2012, “Asymptotic Effect of Initial and Upstream Conditions on Turbulence,” ASME J. Fluid Eng., 134(6), p. 061203.

[CrossRef]Horender, S., 2013, “Turbulent Flow Downstream of a Large Solidity Perforated Plate: Near-Field Characteristics of Interacting Jets,” Fluid Dyn. Res., 45(2), p. 025501.

[CrossRef]Uberoi, M. S., and Wallis, S., 1967, “Effect of Grid Geometry on Turbulence Decay,” Phys. Fluids, 10, pp. 1216–1224.

[CrossRef]Lavoie, P., Antonia, R. A., and Djenidi, L., 2004, “Effect of Grid Geometry on the Scale-By-Scale Budget of Decaying Grid Turbulence,” 15th Australasian Fluid Mechanics Conference, University of Sydney, Sydney, Australia, Dec. 13–17.

Liu, R., Ting, D. S.-K., and Rankin, G. W., 2004, “On the Generation of Turbulence With a Perforated Plate,” Exp. Therm. Fluid Sci., 28(4), pp. 307–316.

[CrossRef]Liu, R., and Ting, D. S.-K., 2007, “Turbulent Flow Downstream of a Perforated Plate: Sharp-Edged Orifice Versus Finite-Thickness Holes,” ASME J. Fluid Eng., 129(9), pp. 1164–1171.

[CrossRef]Judd, M., Raupach, J. M. R., and Finnigan, J. J., 1996, “A Wind Tunnel Study of Turbulent Flow Around Single and Multiple Windbreaks, Part I: Velocity Fields,” Boundary-Layer Meteorol., 80, pp. 127–165.

[CrossRef]Arianmehr, I., Ting, D. S.-K., and Ray, S., 2013, “Assisted Turbulence Convective Heat Transfer for Cooling the Photovoltaic Cells,” ASME Paper HT2013-17210.

[CrossRef]Incropera, F. P., and DeWitt, D. P., 1996, *Fundamentals of Heat and Mass Transfer*, 3rd ed., Wiley, NY.

Jørgensen, F. E., 2002,
How to Measure Turbulence With Hot-Wire Anemometers—A Practical Guide
, Dantec Dynamics, Skovlunde, Denmark.

Ting, D. S. K., 2013, *Some Basics of Engineering Flow Turbulence*, revised ed., Naomi Ting's Book, Windsor, Canada.

Van Atta, C. W., and Chen, W. Y., 1969, “Measurements of Spectral Energy Transfer in Grid Turbulence,” J. Fluid Mech., 38(4), pp. 43–763.

[CrossRef]Taylor, G. I., 1938, “The Spectrum of Turbulence,” Proc. R. Soc. London, Ser. A, 164, pp. 476–490.

[CrossRef]Dennis, D. J. C., and Nickels, T. B., 2008, “On the Limitations of Taylor's Hypothesis in Constructing Long Structures in a Turbulent Boundary Layer,” J. Fluid Mech., 614, pp. 197–206.

[CrossRef]Lin, C. C., 1953, “On Taylor's Hypothesis and the Acceleration Terms in the Navier–Stokes Equation,” Q. Appl. Math., 10, pp. 295–306.

[CrossRef]Lumley, J. L., 1965, “Interpretation of Time Spectra Measured in High-Intensity Shear Flows,” Phys. Fluids, 8(6), pp. 1056–1062.

[CrossRef]Builtjes, P. J. H., 1975, “Determination of the Eulerian Longitudinal Integral Length Scale in a Turbulent Boundary Layer,” Appl. Sci. Res., 31(5), pp. 397–399.

[CrossRef]White, F. M., 2003, *Fluid Mechanics*, 5th ed., McGraw-Hill, NY.

Kline, S. J., Lestin, A. V., and Waitman, B. A., 1960, “Preliminary Experimental Investigation of Effects of Free-Stream Turbulence on Turbulent Boundary Layer Growth,” NASA TN D-368.

Evans, R. L., 1972, “Free Stream Turbulence Effect on the Turbulent Boundary Layer,” Department of Engineering, University of Cambridge, Report No. CUED/A Turbo/TR41.

White, F., 1991, *Viscous Fluid Flow*, 2nd ed., McGraw-Hill, NY.

Vafai, K., and Tien, C. L., 1981, “Boundary and Inertia Effects on Flow and Heat Transfer in Porous,” Int. J. Heat Mass Transfer, 24, pp. 195–203.

[CrossRef]Figliola, R. S., and Beasley, D. E., 2011, *Theory and Design for Mechanical Measurements*, 5th ed., Wiley, NY.

Alfredsson, P. H., Örlü, R., and Segalini, A., 2012, “A New Formulation for the Streamwise Turbulence Intensity Distribution in Wall-Bounded Turbulent Flows,” Eur. J. Mech. B/Fluids, 36, pp. 167–175.

[CrossRef]Patten, N., Griffin, P., and Young, T. M., 2013, “Effects of Freestream Turbulence on the Characteristics in the Boundary Layer Near the Transition Onset Location,” ASME J. Fluid Eng., 135(7), p. 071203.

[CrossRef]Westin, K. J. A., Bakchinov, A. A., Kozlov, V. V., and Alfredsson, P. H., 1998, “Experiments on Localized Disturbances in a Flat Plate Boundary Layer. Part 1. The Receptivity and Evolution of a Localized Free Stream Disturbance,” Eur. J. Mech. B/Fluids, 17, pp. 823–846.

[CrossRef]Alving, A. E., and Fernholz, H. H., 1996, “Turbulence Measurements Around a Mild Separation Bubble and Downstream of Reattachment,” J. Fluid Mech., 322, pp. 297–328.

[CrossRef]Barrett, M. J., and Hollingsworth, D. K., 2001, “On the Calculation of Length Scales for Turbulent Heat Transfer Correlation,” ASME J. Heat Transfer, 123(5), pp. 878–883.

[CrossRef]Carullo, J. S., Nasir, S., Cress, R. D., Ng, W. F., Thole, K. A., Zhang, L. J., and Moon, H. K., 2011, “The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade,” ASME J. Turbomach., 133(1), p. 011030.

[CrossRef]Peyrin, F., and Kondjoyan, A., 2002, “Effect of Turbulent Integral Length Scale on Heat Transfer Around a Circular Cylinder Placed Cross to an Air flow,” Exp. Therm. Fluid Sci., 26, pp. 455–460.

[CrossRef]