Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates with nonuniform surface properties in the transverse direction are studied based on kinetic theory. We considered a simplified model in which one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary on which the accommodation coefficient varies periodically and smoothly in the transverse direction. The spatially two-dimensional (2D) problem in the cross section is studied numerically based on the linearized Bhatnagar–Gross–Krook–Welander (BGKW) model of the Boltzmann equation. The flow behavior, i.e., the macroscopic flow velocity and the mass flow rate of the gas as well as the velocity distribution function, is studied over a wide range of the mean free path of the gas and the parameters of the distribution of the accommodation coefficient. The mass flow rate of the gas is approximated by a simple formula consisting of the data of the spatially one-dimensional (1D) problems. When the mean free path is large, the distribution function assumes a wavy variation in the molecular velocity space due to the effect of a nonuniform surface property of the plate.