0
Research Papers: Multiphase Flows

Annular Gap Bubble Column: Experimental Investigation and Computational Fluid Dynamics Modeling

[+] Author and Article Information
Giorgio Besagni

Department of Energy,
Politecnico di Milano,
Via Lambruschini 4,
Milan 20156, Italy
e-mail: giorgio.besagni@polimi.it

Gaël Raymond Guédon

Department of Energy,
Politecnico di Milano,
Via Lambruschini 4,
Milan 20156, Italy
e-mail: gaelraymond.guedon@polimi.it

Fabio Inzoli

Department of Energy,
Politecnico di Milano,
Via Lambruschini 4,
Milan 20156, Italy
e-mail: fabio.inzoli@polimi.it

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received February 24, 2015; final manuscript received June 26, 2015; published online August 10, 2015. Assoc. Editor: Riccardo Mereu.

J. Fluids Eng 138(1), 011302 (Aug 10, 2015) (15 pages) Paper No: FE-15-1126; doi: 10.1115/1.4031002 History: Received February 24, 2015

This paper investigates the countercurrent gas–liquid flow in an annular gap bubble column with a 0.24 m inner diameter by using experimental and numerical investigations. The two-phase flow is studied experimentally using flow visualizations, gas holdup measurements, and double fiber optical probes in the following range of operating conditions: superficial air velocities up to 0.23 m/s and superficial water velocities up to −0.11 m/s, corresponding to gas holdups up to 29%. The flow visualizations were used to observe the flow patterns and to obtain the bubble size distribution (BSD). The gas holdup measurements were used for investigating the flow regime transitions, and the double fiber optical probes were used to study the local flow phenomena. A computational fluid dynamics (CFD) Eulerian two-fluid modeling of the column operating in the bubbly flow regime is proposed using the commercial software ansys fluent. The three-dimensional (3D) transient simulations have been performed considering a set of nondrag forces and polydispersity. It is shown that the errors in the global holdup and in the local properties are below 7% and 16%, respectively, in the range considered.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Brooks, C. S. , Paranjape, S. S. , Ozar, B. , Hibiki, T. , and Ishii, M. , 2012, “Two-Group Drift-Flux Model for Closure of the Modified Two-Fluid Model,” Int. J. Heat Fluid Flow, 37, pp. 196–208. [CrossRef]
Shawkat, M. E. , and Ching, C. Y. , 2011, “Liquid Turbulence Kinetic Energy Budget of Co-Current Bubbly Flow in a Large Diameter Vertical Pipe,” ASME J. Fluids Eng., 133(9), p. 091303. [CrossRef]
Yamaguchi, K. , and Yamazaki, Y. , 1982, “Characteristics of Counter Current Gas–Liquid Two-Phase Flow in Vertical Tubes,” J. Nucl. Sci. Technol., 19(12), pp. 985–996. [CrossRef]
Hasan, A. R. , Kabir, C. S. , and Srinivasan, S. , 1994, “Countercurrent Bubble and Slug Flows in a Vertical System,” Chem. Eng. Sci., 49(16), pp. 2567–2574. [CrossRef]
Aritomi, M. , Zhou, S. , Nakajima, M. , Takeda, Y. , Mori, M. , and Yoshioka, Y. , 1996, “Measurement System of Bubbly Flow Using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit,” J. Nucl. Sci. Technol., 33(12), pp. 915–923. [CrossRef]
Fuangworawong, N. , Kikura, H. , Aritomi, M. , and Komeno, T. , 2007, “Tomographic Imaging of Counter-Current Bubbly Flow by Wire Mesh Tomography,” Chem. Eng. J., 130(2–3), pp. 111–118. [CrossRef]
Ghosh, S. , Pratihar, D. K. , Maiti, B. , and Das, P. K. , 2012, “Identification of Flow Regimes Using Conductivity Probe Signals and Neural Networks for Counter-Current Gas–Liquid Two-Phase Flow,” Chem. Eng. Sci., 84, pp. 417–436. [CrossRef]
Ghosh, S. , Pratihar, D. K. , Maiti, B. , and Das, P. K. , 2013, “Automatic Classification of Vertical Counter-Current Two-Phase Flow by Capturing Hydrodynamic Characteristics Through Objective Descriptions,” Int. J. Multiphase Flow, 52, pp. 102–120. [CrossRef]
Youssef Ahmed, A. , Al-Dahhan Muthanna, H. , and Dudukovic Milorad, P. , 2013, “Bubble Columns With Internals: A Review,” Int. J. Chem. React. Eng., 11(1), pp. 169–223.
Al-Oufi, F. M. , Cumming, I. W. , and Rielly, C. D. , 2010, “Destabilisation of Homogeneous Bubbly Flow in an Annular Gap Bubble Column,” Can. J. Chem. Eng., 88(4), pp. 482–490. [CrossRef]
Julia, J. E. , Ozar, B. , Dixit, A. , Jeong, J.-J. , Hibiki, T. , and Ishii, M. , 2009, “Axial Development of Flow Regime in Adiabatic Upward Two-Phase Flow in a Vertical Annulus,” ASME J. Fluids Eng., 131(2), p. 021302. [CrossRef]
Das, G. , Das, P. K. , Purohit, N. K. , and Mitra, A. K. , 1999, “Flow Pattern Transition During Gas Liquid Upflow Through Vertical Concentric Annuli—Part I: Experimental Investigations,” ASME J. Fluids Eng., 121(4), pp. 895–901. [CrossRef]
Besagni, G. , Guédon, G. , and Inzoli, F. , 2014, “Experimental Investigation of Counter Current Air–Water Flow in a Large Diameter Vertical Pipe With Inners,” J. Phys.: Conf. Ser., 547(1), p. 012024. [CrossRef]
Ziegenhein, T. , Rzehak, R. , and Lucas, D. , 2015, “Transient Simulation for Large Scale Flow in Bubble Columns,” Chem. Eng. Sci., 122(27), pp. 1–13. [CrossRef]
Masood, R. M. A. , and Delgado, A. , 2014, “Numerical Investigation of the Interphase Forces and Turbulence Closure in 3D Square Bubble Columns,” Chem. Eng. Sci., 108, pp. 154–168. [CrossRef]
Laborde-Boutet, C. , Larachi, F. , Dromard, N. , Delsart, O. , and Schweich, D. , 2009, “CFD Simulation of Bubble Column Flows: Investigations on Turbulence Models in RANS Approach,” Chem. Eng. Sci., 64(21), pp. 4399–4413. [CrossRef]
Masood, R. M. A. , Khalid, Y. , and Delgado, A. , 2015, “Scale Adaptive Simulation of Bubble Column Flows,” Chem. Eng. J., 262, pp. 1126–1136. [CrossRef]
Masood, R. M. A. , Rauh, C. , and Delgado, A. , 2014, “CFD Simulation of Bubble Column Flows: An Explicit Algebraic Reynolds Stress Model Approach,” Int. J. Multiphase Flow, 66, pp. 11–25. [CrossRef]
Zhang, D. , Deen, N. G. , and Kuipers, J. A. M. , 2006, “Numerical Simulation of the Dynamic Flow Behavior in a Bubble Column: A Study of Closures for Turbulence and Interface Forces,” Chem. Eng. Sci., 61(23), pp. 7593–7608. [CrossRef]
Ziegenhein, T. , Lucas, D. , Rzehak, R. , and Krepper, E. , 2013, “Closure Relations for CFD Simulation of Bubble Columns,” 8th International Conference on Multiphase Flow, ICMF 2013, Jeju, Korea, May 26–31, pp. 1–11.
Pourtousi, M. , Sahu, J. N. , and Ganesan, P. , 2014, “Effect of Interfacial Forces and Turbulence Models on Predicting Flow Pattern Inside the Bubble Column,” Chem. Eng. Process., 75, pp. 38–47. [CrossRef]
Tabib, M. V. , Roy, S. A. , and Joshi, J. B. , 2008, “CFD Simulation of Bubble Column—An Analysis of Interphase Forces and Turbulence Models,” Chem. Eng. J., 139(3), pp. 589–614. [CrossRef]
Besagni, G. , and Inzoli, F. , 2015, “Role of Interfacial Forces in Bubble Column Simulations,” 33rd UIT Heat Transfer Conference, L'Aquila, Italy, June 22–24.
Reilly, I. , Scott, D. , Debruijn, T. , and MacIntyre, D. , 1994, “The Role of Gas Phase Momentum in Determining Gas Holdup and Hydrodynamic Flow Regimes in Bubble Column Operations,” Can. J. Chem. Eng., 72(1), pp. 3–12. [CrossRef]
Aloufi, F. M. , 2011, “An Investigation of Gas Void Fraction and Transition Conditions for Two-Phase Flow in an Annular Gap Bubble Column,” Ph.D. thesis, Loughborough University, Loughborough, UK.
Honkanen, M. , Saarenrinne, P. , Stoor, T. , and Niinimäki, J. , 2005, “Recognition of Highly Overlapping Ellipse-Like Bubble Images,” Meas. Sci. Technol., 16(9), pp. 1760–1770. [CrossRef]
Lage, P. L. C. , and Espósito, R. O. , 1999, “Experimental Determination of Bubble Size Distributions in Bubble Columns: Prediction of Mean Bubble Diameter and Gas Hold Up,” Powder Technol., 101(2), pp. 142–150. [CrossRef]
Wongsuchoto, P. , Charinpanitkul, T. , and Pavasant, P. , 2003, “Bubble Size Distribution and Gas–Liquid Mass Transfer in Airlift Contactors,” Chem. Eng. J., 92(1–3), pp. 81–90. [CrossRef]
Rakoczy, R. , and Masiuk, S. , 2009, “Experimental Study of Bubble Size Distribution in a Liquid Column Exposed to a Rotating Magnetic Field,” Chem. Eng. Process., 48(7), pp. 1229–1240. [CrossRef]
Hanselmann, W. , and Windhab, E. , 1998, “Flow Characteristics and Modelling of Foam Generation in a Continuous Rotor/Stator Mixer,” J. Food Eng., 38(4), pp. 393–405. [CrossRef]
Passos, A. D. , Voulgaropoulos, V. P. , Paras, S. V. , and Mouza, A. A. , 2015, “The Effect of Surfactant Addition on the Performance of a Bubble Column Containing a Non-Newtonian Liquid,” Chem. Eng. Res. Des., 95, pp. 93–104. [CrossRef]
Boes, R. M. , and Hager, W. H. , 1998, “Fiber-Optical Experimentation in Two-Phase Cascade Flow,” International RCC Dams Seminar, K. Hansen, ed., Denver, pp. 1–13.
Barrau, E. , Rivière, N. , Poupot, C. , and Cartellier, A. , 1999, “Single and Double Optical Probes in Air–Water Two-Phase Flows: Real Time Signal Processing and Sensor Performance,” Int. J. Multiphase Flow, 25(2), pp. 229–256. [CrossRef]
Simonnet, M. , Gentric, C. , Olmos, E. , and Midoux, N. , 2007, “Experimental Determination of the Drag Coefficient in a Swarm of Bubbles,” Chem. Eng. Sci., 62(3), pp. 858–866. [CrossRef]
Vejražka, J. , Večeř, M. , Orvalho, S. , Sechet, P. , Ruzicka, M. C. , and Cartellier, A. , 2010, “Measurement Accuracy of a Mono-Fiber Optical Probe in a Bubbly Flow,” Int. J. Multiphase Flow, 36(7), pp. 533–548. [CrossRef]
Zhang, W. , and Zhu, D. Z. , 2013, “Bubble Characteristics of Air–Water Bubbly Jets in Crossflow,” Int. J. Multiphase Flow, 55, pp. 156–171. [CrossRef]
Chang, K.-A. , Lim, H.-J. , and Su, C. B. , 2003, “Fiber Optic Reflectometer for Velocity and Fraction Ratio Measurements in Multiphase Flows,” Rev. Sci. Instrum., 74(7), pp. 3559–3565. [CrossRef]
Lima Neto, I. , Zhu, D. , and Rajaratnam, N. , 2008, “Air Injection in Water With Different Nozzles,” J. Environ. Eng., 134(4), pp. 283–294. [CrossRef]
Kiambi, S. L. , Duquenne, A.-M. , Dupont, J. B. , Colin, C. , Risso, F. , and Delmas, H. , 2003, “Measurements of Bubble Characteristics: Comparison Between Double Optical Probe and Imaging,” Can. J. Chem. Eng., 81(3–4), pp. 764–770.
Chaumat, H. , Billet-Duquenne, A. M. , Augier, F. , Mathieu, C. , and Delmas, H. , 2005, “Application of the Double Optic Probe Technique to Distorted Tumbling Bubbles in Aqueous or Organic Liquid,” Chem. Eng. Sci., 60(22), pp. 6134–6145. [CrossRef]
Cartellier, A. , and Barrau, E. , 1998, “Monofiber Optical Probes for Gas Detection and Gas Velocity Measurements: Conical Probes,” Int. J. Multiphase Flow, 24(8), pp. 1265–1294. [CrossRef]
Ishii, M. , and Hibiki, T. , 2011, Thermo-Fluid Dynamics of Two-Phase Flow, Springer-Verlag New York.
Rzehak, R. , and Krepper, E. , 2013, “Closure Models for Turbulent Bubbly Flows: A CFD Study,” Nucl. Eng. Des., 265, pp. 701–711. [CrossRef]
Tomiyama, A. , Tamai, H. , Zun, I. , and Hosokawa, S. , 2002, “Transverse Migration of Single Bubbles in Simple Shear Flows,” Chem. Eng. Sci., 57(11), pp. 1849–1858. [CrossRef]
Wellek, R. M. , Agrawal, A. K. , and Skelland, A. H. P. , 1966, “Shape of Liquid Drops Moving in Liquid Media,” AIChE J., 12(5), pp. 854–862. [CrossRef]
Burns, A. D. , Frank, T. , Hamill, I. , and Shi, J.-M. , 2004, “The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows,” 5th International Conference on Multiphase Flow, ICMF’04, Yokohama, Japan, May 30–June 4, pp. 1–17.
Antal, S. P. , Lahey, R. T., Jr. , and Flaherty, J. E. , 1991, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, 17(5), pp. 635–652. [CrossRef]
Besagni, G. , Guédon, G. , and Inzoli, F. , 2014, “Experimental and Numerical Study of Counter-Current Flow in a Vertical Pipe,” ASME Paper No. ESDA2014-20053.
Shaikh, A. , and Al-Dahhan, M. H. , 2007, “A Review on Flow Regime Transition in Bubble Columns,” Int. J. Chem. React. Eng., 5(1), pp. 1–68.
Krepper, E. , Lucas, D. , Frank, T. , Prasser, H.-M. , and Zwart, P. J. , 2008, “The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows,” Nucl. Eng. Des., 238(7), pp. 1690–1702. [CrossRef]
Lau, Y. M. , Sujatha, K. T. , Gaeini, M. , Deen, N. G. , and Kuipers, J. A. M. , 2013, “Experimental Study of the Bubble Size Distribution in a Pseudo-2D Bubble Column,” Chem. Eng. Sci., 98, pp. 203–211. [CrossRef]
Hernandez-Aguilar, J. R. , Coleman, R. G. , Gomez, C. O. , and Finch, J. A. , 2004, “A Comparison Between Capillary and Imaging Techniques for Sizing Bubbles in Flotation Systems,” Miner. Eng., 17(1), pp. 53–61. [CrossRef]
Parthasarathy, R. , and Ahmed, N. , 1994, “Bubble Size Distribution in a Gas Sparged Vessel Agitated by a Rushton Turbine,” Ind. Eng. Chem. Res., 33(3), pp. 703–711. [CrossRef]
Kelessidis, V. C. , and Dukler, A. E. , 1989, “Modeling Flow Pattern Transitions for Upward Gas–Liquid Flow in Vertical Concentric and Eccentric Annuli,” Int. J. Multiphase Flow, 15(2), pp. 173–191. [CrossRef]
Otake, T. , Tone, S. , and Shinohara, K. , 1981, “Gas Holdup in the Bubble Column With Cocurrent and Countercurrent Gas–Liquid Flow,” J. Chem. Eng. Jpn., 14(4), pp. 338–340. [CrossRef]
Akita, K. , and Yoshida, F. , 1973, “Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns: Effects of Liquid Properties,” Ind. Eng. Chem. Process Des. Dev., 12(1), pp. 76–80. [CrossRef]
Krishna, R. , Wilkinson, P. M. , and Van Dierendonck, L. L. , 1991, “A Model for Gas Holdup in Bubble Columns Incorporating the Influence of Gas Density on Flow Regime Transitions,” Chem. Eng. Sci., 46(10), pp. 2491–2496. [CrossRef]
Schumpe, A. , and Grund, G. , 1986, “The Gas Disengagement Technique for Studying Gas Holdup Structure in Bubble Columns,” Can. J. Chem. Eng., 64(6), pp. 891–896. [CrossRef]
Wilkinson, P. M. , Spek, A. P. , and van Dierendonck, L. L. , 1992, “Design Parameters Estimation for Scale-Up of High-Pressure Bubble Columns,” AIChE J., 38(4), pp. 544–554. [CrossRef]
Letzel, H. M. , Schouten, J. C. , Krishna, R. , and van den Bleek, C. M. , 1999, “Gas Holdup and Mass Transfer in Bubble Column Reactors Operated at Elevated Pressure,” Chem. Eng. Sci., 54(13–14), pp. 2237–2246. [CrossRef]
Ruzicka, M. C. , Drahovs, J. , Fialova, M. , and Thomas, N. H. , 2001, “Effect of Bubble Column Dimensions on Flow Regime Transition,” Chem. Eng. Sci., 56(21–22), pp. 6117–6124. [CrossRef]
Hur, Y. G. , Yang, J. H. , Jung, H. , and Park, S. B. , 2013, “Origin of Regime Transition to Turbulent Flow in Bubble Column: Orifice- and Column-Induced Transitions,” Int. J. Multiphase Flow, 50, pp. 89–97. [CrossRef]
Zahradnik, J. , Fialova, M. , Rruvzivc, M. , Drahovs, J. , Kavstanek, F. , and Thomas, N. H. , 1997, “Duality of the Gas–Liquid Flow Regimes in Bubble Column Reactors,” Chem. Eng. Sci., 52(21–22), pp. 3811–3826. [CrossRef]
Besagni, G. , and Inzoli, F. , 2015, “Influence of Electrolyte Concentration on Holdup, Flow Regime Transition and Local Flow Properties in a Large Scale Bubble Column,” 33rd UIT Heat Transfer Conference, L'Aquila, Italy, June 22–24.
Dargar, P. , and Macchi, A. , 2006, “Effect of Surface-Active Agents on the Phase Holdups of Three-Phase Fluidized Beds,” Chem. Eng. Process., 45(9), pp. 764–772. [CrossRef]
Rollbusch, P. , Becker, M. , Ludwig, M. , Bieberle, A. , Grünewald, M. , Hampel, U. , and Franke, R. , 2015, “Experimental Investigation of the Influence of Column Scale, Gas Density and Liquid Properties on Gas Holdup in Bubble Columns,” Int. J. Multiphase Flow, 75, pp. 88–106. [CrossRef]
Reith, T. , Renken, S. , and Israel, B. A. , 1968, “Gas Hold-Up and Axial Mixing in the Fluid Phase of Bubble Columns,” Chem. Eng. Sci., 23(6), pp. 619–629. [CrossRef]
Thorat, B. N. , Shevade, A. V. , Bhilegaonkar, K. N. , Aglawe, R. H. , Parasu Veera, U. , Thakre, S. S. , Pandit, A. B. , Sawant, S. B. , and Joshi, J. B. , 1998, “Effect of Sparger Design and Height to Diameter Ratio on Fractional Gas Hold-Up in Bubble Columns,” Chem. Eng. Res. Des., 76(7), pp. 823–834. [CrossRef]
Reilly, I. G. , Scott, D. S. , De Bruijn, T. , Jain, A. , and Piskorz, J. , 1986, “A Correlation for Gas Holdup in Turbulent Coalescing Bubble Columns,” Can. J. Chem. Eng., 64(5), pp. 705–717. [CrossRef]
Joshi, J. B. , and Sharma, M. M. , 1979, “A Circulation Cell Model for Bubble Column,” Trans. I. Chem. Eng., 57, pp. 244–251.
Hughmark, G. A. , 1967, “Holdup and Mass Transfer in Bubble Columns,” Ind. Eng. Chem. Process Des. Dev., 6(2), pp. 218–220. [CrossRef]
Kawase, Y. , and Moo-Young, M. , 1987, “Theoretical Prediction of Gas Hold-Up in Bubble Columns With Newtonian and Non-Newtonian Fluids,” Ind. Eng. Chem. Res., 26(5), pp. 933–937. [CrossRef]
Hoang, N. H. , Euh, D. J. , Yun, B. J. , and Song, C. H. , 2015, “A New Method of Relating a Chord Length Distribution to a Bubble Size Distribution for Vertical Bubbly Flows,” Int. J. Multiphase Flow, 71, pp. 23–31. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Image processing: (a) bubble sampling and (b) sampling area (top view of the column)

Grahic Jump Location
Fig. 2

The optical probe and its position within the pipe cross section

Grahic Jump Location
Fig. 1

Experimental facility details: (a) experimental facility, (b) air distributor, and (c) photo of the facility

Grahic Jump Location
Fig. 4

Photographs of the air–water flow at h=2.8 m—influence of the superficial gas velocity: JL = 0 m/s and (a) JG = 0.0087 m/s, (b) JG = 0.0220 m/s, (c) JG = 0.0313 m/s, (d) JG = 0.0408 m/s, (e) JG = 0.1192 m/s, and (f) JG = 0.1986 m/s

Grahic Jump Location
Fig. 5

Photographs of the air–water flow at h=2.8 m—influence of the superficial liquid velocity: JG = 0.220 m/s and (a) JL = 0 m/s; (b) JL = −0.08 m/s

Grahic Jump Location
Fig. 6

Image analysis results (JG = 0.0087 m/s and JL = 0 m/s): (a) BSD and (b) relation between aspect ratio and equivalent diameter

Grahic Jump Location
Fig. 8

(a) Swarm velocity and (b) transitions velocity

Grahic Jump Location
Fig. 9

Holdup measurements (JL = 0 m/s): (a) comparison with literature correlations and (b) comparison with data from the literature (Table 3)

Grahic Jump Location
Fig. 10

Proposed correlation for the gas holdup

Grahic Jump Location
Fig. 11

Optical probe measurements: (a) local void fraction, (b) bubble velocity, (c) bubble Sauter mean diameter, and (d) interfacial area

Grahic Jump Location
Fig. 12

Bubble chord distributions

Grahic Jump Location
Fig. 13

Cross-sectional contour of time-averaged air volume fraction at various vertical positions for case A (values of the area-averaged air volume fraction are also displayed)

Grahic Jump Location
Fig. 14

Cross-sectional contour of time-averaged air volume fraction at various vertical positions for case B (values of the area-averaged air volume fraction are also displayed)

Grahic Jump Location
Fig. 15

Cross-sectional contour of time-averaged volume fraction at the horizontal plane h = 2.3 m (the black dot indicates the probe location for local measurements): (a) case A and (b) case B

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In