Aizenshtein, M. D.
, 1957, Centrifugal Pumps for the Petroleum Industry, Gostoptekhizdat, Moscow.
Cao, G. J.
,
Wu, Y. L.
,
Liu, S. H.
,
Chen, G.
, and
Fu, S. H.
, 2006, “Experiment Studies on Cavitation Characteristics of the Centrifugal Oil Pump for Pumping Viscous Liquid,” J. Eng. Thermophys., 27(5), pp. 784–786.
Cao, G. J.
,
Wu, Y. L.
,
Liu, S. H.
,
Chen, G.
, and
Fu, S. H.
, 2008, “Influence of the Shaft Speed to the Centrifugal Oil Pump Cavitation Characteristics and Conversion Study,” J. Eng. Thermophys., 29(1), pp. 65–67.
Brennen, C. E.
, 1994, Hydrodynamics of Pumps, Oxford University Press, Oxford.
Hirschi, R.
,
Dupont, P.
,
Avellan, F.
,
Favre, J. N.
,
Guelich, J. F.
, and
Parkinson, E.
, 1998, “Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests,” ASME J. Fluids Eng., 120(4), pp. 705–711.
[CrossRef]
Wursthorn, S.
, and
Schnerr, G. H.
, 2001, “Numerical Investigation of Performance Losses in a Centrifugal Pump Due to Cavitation,” ZAMM, 81(Suppl. S3), pp. S579–S580.
[CrossRef]
CoutierDelgosha, O.
,
Patella, R. R.
,
Rebound, J. L.
,
Hofmann, M.
, and
Stoffel, B.
, 2004, “Experimental and Numerical Studies in a Centrifugal Pump With TwoDimensional Curved Blades in Cavitating Condition,” ASME J. Fluids Eng., 125(6), pp. 970–978.
[CrossRef]
Pouffary, B.
,
Patella, R. F.
,
Rebound, J. L.
, and
Lambert, R. A.
, 2008, “Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery,” ASME J. Fluids Eng., 130(6), p. 061301.
[CrossRef]
Pouffary, B.
,
Patella, R. F.
,
Reboud, J. L.
, and
Lambert, P. A.
, 2008, “Numerical Analysis of Cavitation Instabilities in Inducer Blade Cascade,” ASME J. Fluids Eng., 130(4), p. 041302.
[CrossRef]
CoutierDelgosha, O.
,
Caignaert, G.
,
Bois, G.
, and
Leroux, J. B.
, 2012, “Influence of the Blade Number on Inducer Cavitating Behavior,” ASME J. Fluids Eng., 134(8), p. 081304.
[CrossRef]
Li, J.
,
Liu, L. J.
, and
Feng, Z. P.
, 2006, “TwoDimensional Analysis of Cavitating Flow in a Centrifugal Pump Using a SinglePhase Reynolds Averaged NavierStokes Solver and Cavitation Model,” Proc. Inst. Mech. Eng., Part A, 220(7), pp. 783–791.
[CrossRef]
Medvitz, R. B.
,
Kunz, R. F.
,
Boger, D. A.
,
Lindau, J. W.
,
Yocum, A. M.
, and
Pauley, L. L.
, 2002, “Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD,” ASME J. Fluids Eng., 124(2), pp. 377–383.
[CrossRef]
Lindau, J. W.
,
Pena, C.
,
Baker, W. J.
,
Dreyer, J. J.
,
Moody, W. L.
,
Kunz, R. F.
, and
Paterson, E. G.
, 2012, “Modeling of Cavitating Flow Through Waterjet Propulsors,” Int. J. Rotating Mach., 2012, p. 716392.
[CrossRef]
Nohmi, M.
,
Goto, A.
,
Iga, Y.
, and
Ikohagi, T.
, 2003, “Cavitation CFD in a Centrifugal Pump,” 5th International Symposium on Cavitation, Osaka, Japan, Nov. 1–4, pp. 1–7.
Liu, S. H.
,
Nishi, M.
, and
Yoshida, K.
, 2001, “Impeller Geometry Suitable for Mini TurboPump,” ASME J. Fluids Eng., 123(3), pp. 500–506.
[CrossRef]
Athavale, M. M.
,
Li, H. Y.
,
Jiang, Y.
, and
Singhal, A.
, 2002, “Application of the Full Cavitation Model to Pumps and Inducers,” Int. J. Rotating Mach., 8(1), pp. 45–56.
[CrossRef]
Zhuang, B. T.
,
Luo, X. W.
,
Zhu, L.
,
Wang, X.
, and
Xu, H. Y.
, 2011, “Cavitation in a ShaftLess Double Suction Centrifugal Miniature Pump,” Int. J. Fluid Mach. Syst., 4(1), pp. 191–198.
[CrossRef]
Bonaiuti, D.
,
Zangeneh, M.
,
Aartojarvi, R.
, and
Eriksson, J.
, 2011, “Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses,” ASME J. Fluids Eng., 132(3), p. 031104.
[CrossRef]
Kim, M. J.
,
Jin, H. B.
, and
Chung, W. J.
, 2012, “A Study on Prediction of Cavitation for Centrifugal Pump,” World Acad. Sci., Eng. Technol., 6(12), pp. 612–617.
Stuparu, A.
,
Muntean, S.
,
SusanResiga, R.
, and
Anton, L.
, 2009, “Numerical Investigation of the Cavitational Behavior of a Storage Pump,” 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, Oct. 14–16, pp. 1–10.
Stuparu, A.
,
SusanResiga, R.
,
Anton, L.
, and
Muntean, S.
, 2011, “A New Approach in Numerical Assessment of Cavitation Behavior of Centrifugal Pumps,” Int. J. Fluid Mach. Syst., 4(1), pp. 104–113.
[CrossRef]
Dupont, P.
, and
Okamura, T.
, 2003, “Cavitating Flow Calculations in Industry,” Int. J. Rotating Mach., 9(3), pp. 163–170.
[CrossRef]
Tang, X. L.
,
Bian, L. Y.
,
Wang, F. J.
,
Li, X. Q.
, and
Hao, M.
, 2013, “Numerical Investigations on Cavitating Flows With Thermodynamic Effects in a DiffuserType Centrifugal Pump,” J. Mech. Sci. Technol., 27(6), pp. 1655–1664.
[CrossRef]
Tani, N.
,
Yamanishi, N.
, and
Tsujimoto, Y.
, 2012, “Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer,” ASME J. Fluids Eng., 134(2), p. 021302.
[CrossRef]
Li, W. G.
, 2011, “Effect of Exit Blade Angle, Viscosity and Roughness in Centrifugal Pumps Investigated by CFD Computation,” TASK Q., 15(1), pp. 21–41.
Pisarenco, M.
,
van der Linden, B.
,
Tijsseling, A.
,
Ory, E.
, and
Dam, J.
, 2011, “Friction Factor Estimation for Turbulent Flows in Corrugated Pipes With Rough Walls,” ASME J. Offshore Mech. Arct. Eng., 133(1), p. 011101.
[CrossRef]
FLUENT, Inc., 2005, FLUENT 6.2 User’s Guide, Vols. 1 and 2, Lebanon, NH.
Nakamura, K.
, and
Someya, T.
, 1980, “Investigation into the Tensile Strength of Real Liquids: The Application to Lubricant Oil,” Trans. JSME, Ser. B, 46(405), pp. 910–918.
[CrossRef]
Washio, S.
,
Takahashi, S.
,
Uda, Y.
, and
Sunahara, T.
, 2002, “Study on Cavitation Inception in Hydraulic Oil Flow Through a Long TwoDimensional Constriction,” Proc. Inst. Mech. Eng., Part J, 215(4), pp. 373–386.
[CrossRef]
Ishihara, T.
, 1982, “Cavitation in Hydraulic Oil,” Trans. JSME, Ser. B, 48(434), pp. 1829–1832.
[CrossRef]
Merkle, C. L.
,
Feng, J. Z.
, and
Buelow, P. E. O.
, 1998, “Computational Modeling of the Dynamics of Sheet Cavitation,” 3rd International Symposium on Cavitation, Grenoble, France, pp. 307–311.
Schnerr, G. H.
, and
Sauer, J.
, 2001, “Physical and Numerical Modeling of Unsteady Cavitation Dynamics,” 4th International Conference on Multiphase Flow, New Orleans, LA, pp. 1–8.
Zwart, P. J.
,
Gerber, A. G.
, and
Belamri, T. A.
, 2004, “TwoPhase Flow Model for Predicting Cavitation Dynamics,” 5th International Conference on Multiphase Flow, Yokohama, Japan, pp. 152–158.
Singhal, A. K.
,
Athavale, M. M.
,
Li, H.
, and
Jiang, Y.
, 2002, “Mathematical Basis and Validation of the Full Cavitation Model,” ASME J. Fluids Eng., 124(3), pp. 617–624.
[CrossRef]
Li, W. G.
, 2014, “Mechanism for Onset of SuddenRising Head Effect in Centrifugal Pump When Handling Viscous Oils,” ASME J. Fluids Eng., 136(7), p. 074501.
[CrossRef]
Hofmann, M.
,
Stoffel, B.
,
Firedrichs, J.
, and
Kosyna, G.
, 2001, “Similarities and Geometrical Effects on Rotating Cavitation in Two Scaled Centrifugal Pumps,” 4th International Symposium on Cavitation, Pasadena, CA, June 20–23, pp. 215–223.
Hofmann, M.
,
Stoffel, B.
,
CoutierDelgosha, O.
,
FortesPatella, R.
, and
Reboud, J. L.
, 2001, “Experimental and Numerical Studies on a Centrifugal Pump With 2DCurved Blades in Cavitating Conditions,” 4th International Symposium on Cavitation, Pasadena, CA, June 20–23, pp. 450–458.
Li, W. G.
, 2014, “Validating Full Cavitation Model With an Experimental Centrifugal Pump,” TASK Q., 18(1), pp. 83–102.
Minami, S.
,
Kawaguchi, K.
, and
Homma, T.
, 1960, “Experimental Study on Cavitation in Centrifugal Pump Impellers,” Bull. JSME, 3(9), pp. 19–29.
[CrossRef]
Kasai, T.
, and
Takamatu, Y.
, 1963, “Experimental Research for Suction Performance and Its Similarity of Centrifugal Pumps,” Trans. JSME, Ser. 2
, 29(204), pp. 1308–1317.
[CrossRef]
Palgrave, R.
, and
Cooper, P.
, 1987, “Visual Studies of Cavitation in Pumping Machinery,” 3rd International Pump User Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, TX, pp. 61–68.
Hirotsu, M.
, and
Kang, C. M.
, 1968, “A Research on Open Type Impeller Pump,” Mem. Inst. Sci. Technol., Meiji Univ., 7(1), pp. 79–107.
Murakami, M.
,
Minemura, K.
, and
Takimoto, M.
, 1980, “Effects of Entrained Air on the Performance of Centrifugal Pumps Under Cavitating Conditions,” Bull. JSME, 23(183), pp. 1435–1442.
[CrossRef]
Daily, J. W.
, and
Johnson, V
. E.
, 1956, “Turbulence and Boundary Layer on Cavitation Inception for Gas Nuclei,” Trans. ASME, 78(8), pp. 1695–1706.
Li, W. G.
, 2012, “Effects of Blade Exit Angle and Liquid Viscosity on Unsteady Flow in Centrifugal Pumps,” Proc. Inst. Mech. Eng., Part A, 226(4), pp. 580–599.
[CrossRef]
Yuan, W.
,
Sauer, J.
,
Günter, H.
, and
Schnerr, G. H.
, 2001, “Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles,” Mec. Ind., 2(5), pp. 383–394.
CoutierDelgosha, O.
,
Reboud, J. L.
, and
Delannoy, Y.
, 2003, “Numerical Simulation of the Unsteady Behaviour of Cavitating Flows,” Int. J. Numer. Methods Fluids, 42(5), pp. 527–548.
Dittakavi, N.
,
Chunekar, A.
, and
Frankel, S.
, 2010, “Large Eddy Simulation of Turbulent Cavitation Interactions in a Venturi Nozzle,” ASME J. Fluids Eng., 132(12), p. 121301.
[CrossRef]
Goncalves, E.
, 2011, “Numerical Study of Unsteady Turbulent Cavitating Flows,” Eur. J. Mech. BFluids, 30(1), pp. 26–40.
[CrossRef]
Decaix, J.
, and
Goncalvès, E.
, 2013, “Investigation of ThreeDimensional Effects on a Cavitating Venturi Flow,” Int. J. Heat Fluid Flow, 44(1), pp. 576–595.
[CrossRef]
Zhou, L. J.
, and
Wang, Z. W.
, 2007, “Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG
k

ɛ
Model,” ASME J. Fluids Eng., 130(1), p. 011302.
[CrossRef]
Yang, J.
,
Zhou, L. J.
, and
Wang, Z. W.
, 2011, “Numerical Simulation of ThreeDimensional Cavitation Around a Hydrofoil,” ASME J. Fluids Eng., 133(8), p. 081301.
[CrossRef]
Luo, X. W.
,
Ji, B.
,
Peng, X. X.
,
Xu, H. Y.
, and
Nishi, M.
, 2012, “Numerical Simulation of Cavity Shedding From a ThreeDimensional Twisted Hydrofoil and Induced Pressure Fluctuation by LargeEddy Simulation,” ASME J. Fluids Eng., 134(4), p. 041202.
[CrossRef]
Ji, B.
,
Luo, X. W.
,
Wu, Y. L.
,
Peng, X. X.
, and
Duan, Y. L.
, 2013, “Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding HorseShoe Vortex Structure Around a Twisted Hydrofoil,” Int. J. Multiphase Flow, 51(1), pp. 33–43.
[CrossRef]
Ji, B.
,
Luo, X. W.
,
Arndt, R. E. A.
, and
Wu, Y. L.
, 2014, “Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on CavitationVortex Interaction,” Ocean Eng., 87(1), pp. 64–77.
[CrossRef]
Huang, B.
,
Zhao, Y.
, and
Wang, G. Y.
, 2014, “Large Eddy Simulation of Turbulent Vortex Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows,” Comput. Fluids, 92(1), pp. 113–124.
[CrossRef]
Ji, B.
,
Luo, X. W.
,
Arndt, R. E. A.
,
Peng, X. X.
, and
Wu, Y. L.
, 2015, “Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil,” Int. J. Multiphase Flow, 68(1), pp. 12–134.