0
Research Papers: Fundamental Issues and Canonical Flows

Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach

[+] Author and Article Information
Juan M. Mejía

Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: jmmejiaca@unal.edu.co

Farid Chejne

Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: fchejne@unal.edu.co

Alejandro Molina

Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: amolinao@unal.edu.co

Amsini Sadiki

Institute of Energy and Power Plant Technology,
Technischen Universität Darmstadt,
Jovanka-Bontschits-Str. 2,
Darmstadt D-64287, Germany
e-mail: sadiki@ekt.tu-darmstadt.de

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 7, 2014; final manuscript received September 15, 2015; published online October 26, 2015. Assoc. Editor: Samuel Paolucci.

J. Fluids Eng 138(2), 021205 (Oct 26, 2015) (9 pages) Paper No: FE-14-1731; doi: 10.1115/1.4031631 History: Received December 07, 2014; Revised September 15, 2015

Mixing of a passive scalar in a high-Schmidt turbulent round jet was studied using large-eddy simulation (LES) coupled to filtered density function (FDF). This coupled approach enabled the solution of the continuity, momentum, and scalar (concentration) transport equations when studying mixing in a confined turbulent liquid jet discharging a conserved scalar (rhodamine B) into a low-velocity water stream. The Monte Carlo method was used for solving the FDF transport equation and controlling the number of particles per cell (NPC) using a clustering and splitting algorithm. A sensibility analysis of the number of stochastic particles per cell as well as the influence of the subgrid-scale (SGS) mixing time constant were evaluated. The comparison of simulation results with experiments showed that LES/FDF satisfactorily reproduced the behavior observed in this flow configuration. At high radial distances, the developed superviscous layer generates an intermittency phenomenon leading to a complex, anisotropic behavior of the scalar field, which is difficult to simulate with the conventional and advanced SGS models required by LES. This work showed a close agreement with reported experimental data at this superviscous layer following the FDF approach.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mejía, J. M. , Sadiki, A. , Molina, A. , Chejne, F. , and Pantangi, P. , 2015, “ Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet,” ASME J. Fluid Eng., 137(3), p. 031301. [CrossRef]
Eidson, T. , 1985, “ Numerical Simulation the Turbulent Rayleigh–Bénard Problem Using Subgrid Modeling,” J. Fluid Mech., 158, pp. 245–268. [CrossRef]
Germano, M. , Piomelli, U. , Moin, P. , and Cabot, W. H. , 1991, “ A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A, 3(7), pp. 1760–1765. [CrossRef]
Moin, P. , Squires, K. , Cabot, W. , and Lee, S. , 1991, “ A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport,” Phys. Fluids A, 3(11), pp. 2746–2757. [CrossRef]
Huai, Y. , 2005, “ Large Eddy Simulation in the Scalar Field,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
Huai, Y. , and Sadiki, A. , 2007, “ Large Eddy Simulation of Mixing Processes in Turbulent Liquid Flows With Chemical Reactions,” 5th International Symposium on Turbulence and Shear Flow Phenomena, R. Friedrich , N. A. Adams , J. K. Eaton , J. A. C. Humphrey , N. Kasagi , and M. A. Leschziner, eds., Munich, Germany, pp. 1137–1142.
Colucci, P. J. , Jaberi, F. A. , Givi, P. , and Pope, S. B. , 1998, “ Filtered Density Function for Large Eddy Simulation Turbulent Reacting Flows,” Phys. Fluids, 10(2), pp. 499–516. [CrossRef]
Jaberi, F. A. , Colucci, P. J. , James, S. , Givi, P. , and Pope, S. B. , 1999, “ Filtered Mass Density Function for Large Eddy Simulation Turbulent Reacting Flows,” J. Fluid Mech., 401, pp. 85–121. [CrossRef]
Riley, J. J. , 2004, “ Review of Large-Eddy Simulation of Non-Premixed Turbulent Combustion,” ASME J. Fluids Eng., 128(2), pp. 209–215. [CrossRef]
Wang, L. , 2007, “ On Discrete Representation Filtered Density Functions for Turbulent Combustion,” Annu. Res. Briefs Center Turbul. Res., 2007, pp. 219–229.
Dopazo, C. , and O'Brien, E. E. , 1976, “ Statistical Treatment Non-Isothermal Chemical Reactions in Turbulence,” Combust. Sci. Tech., 13(1–6), pp. 99–112. [CrossRef]
O'Brien, E. E. , 1980, “ The Probability Density Function (PDF) Approach to Reacting Turbulent Flows,” Turbulent Reacting Flows, P. A. Libby , and F. A. Williams , eds., Springer-Verlag, Berlin, Heidelberg, pp. 185–218.
Pope, S. B. , 1985, “ PDF Methods for Turbulent Reactive Flow,” Prog. Energy Combust. Sci., 11(2), pp. 119–192. [CrossRef]
Shetty, D. A. , Chandy, A. J. , and Frankel, S. H. , 2010, “ A New Fractal Interaction by Exchange With the Mean Mixing Model for Large Eddy Simulation/Filtered Mass Density Function Applied to a Multiscalar Three-Stream Turbulent Jet,” Phys. Fluids, 22(2), p. 025102. [CrossRef]
Mitarai, S. , Riley, J. J. , and Kosály, G. , 2005, “ Testing Mixing Models for Monte Carlo Probability Density Function Simulations,” Phys. Fluids, 17(4), p. 047101. [CrossRef]
Meyer, D. W. , and Jenny, P. , 2009, “ Micromixing Models for Turbulent Flows,” J. Comput. Phys., 228(4), pp. 1275–1293. [CrossRef]
van Vliet, E. , Derksen, J. J. , and van den Akker, H. E. A. , 2005, “ Turbulent Mixing in a Tubular Reactor: Assessment an FDF/LES Approach,” AIChE J., 51(3), pp. 725–739. [CrossRef]
Mustata, R. , Valiño, L. , Jiménez, C. , Jones, W. P. , and Bondi, S. , 2006, “ A Probability Density Function Eulerian Monte Carlo Field Method for Large Eddy Simulations: Application to a Turbulent Piloted Methane/Air Diffusion Flame (Sandia D),” Combust. Flame, 145(1–2), pp. 88–104. [CrossRef]
Olbricht, C. , Hahn, F. , Sadiki, A. , and Janicka, J. , 2007, “ Analysis Subgrid Scale Mixing Using a Hybrid LES-Monte-Carlo PDF Method,” Int. J. Heat Fluid Flow, 28(6), pp. 1215–1226. [CrossRef]
Yaldizli, M. , Mehravaran, K. , and Jaberi, F. A. , 2010, “ Large-Eddy Simulations Turbulent Methane Jet Flames With Filtered Mass Density Function,” Int. J. Heat Mass Transfer, 53(11–12), pp. 2551–2562. [CrossRef]
Zhao, W. , Zhang, C. , and Chen, C. , 2011, “ Large Eddy Simulation of Bluff-Body Stabilized Flames Using a Multi-Environment Filtered Density Function Model,” Proc. Combust. Inst., 33(1), pp. 1347–1353. [CrossRef]
McDermott, R. , and Pope, S. B. , 2007, “ A Particle Formulation for Treating Differential Diffusion in Filtered Density Function Methods,” J. Comput. Phys., 226(1), pp. 947–993. [CrossRef]
van Vliet, E. , Derksen, J. J. , van den Akker, H. E. A. , and Fox, R. O. , 2007, “ Numerical Study on the Turbulent Reacting Flow in the Vicinity the Injector an LDPE Tubular Reactor,” Chem. Eng. Sci., 62(9), pp. 2435–2444. [CrossRef]
Schwertfirm, F. , and Manhart, M. , 2009, “ A-Priori Analysis the LMSE Micromixing Model for Filtered-Density Function Simulation in High Schmidt Number Flows,” High Performance Computing in Science Engineering, Garching/Munich 2007, S. Wagner , M. Steinmetz, A. Bode, and E. Brehm, eds., Springer-Verlag, Berlin, Heidelberg, pp. 303–314.
Schwertfirm, F. , and Manhart, M. , 2010, “ Development a DNS–FDF Approach to Inhomogeneous Non-Equilibrium Mixing for High Schmidt Number Flows,” Direct and Large-Eddy Simulation VII, V. Armenio , B. Guerts, and J. Froehlich, eds., Springer, The Netherlands, pp. 153–159.
Schwertfirm, F. , and Manhart, M. , 2010, “ A Numerical Approach for Simulation Turbulent Mixing and Chemical Reaction at High Schmidt Numbers,” Micro and Macro Mixing: Analysis, Simulation and Numerical Calculation, H. Bockhorn , D. Mewes, W. Peukert, and H. J. Warnecke, eds., Springer-Verlag, Berlin, Heidelberg, pp. 305–324.
Pope, S. B. , 1990, “ Computations of Turbulent Combustion: Progress and Challenges,” Proc. Combust. Inst., 23(1), pp. 591–612. [CrossRef]
Heinz, S. , 2003, “ On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation,” Flow, Turbul. Combust., 70(1), pp. 153–181. [CrossRef]
Klimenko, A. Y. , 2007, “ On Simulating Scalar Transport by Mixing Between Lagrangian Particles,” Phys. Fluids, 19(3), pp. 31702–31704. [CrossRef]
Haworth, D. C. , 2010, “ Progress in Probability Density Function Methods for Turbulent Reacting Flows,” Prog. Energy Combust. Sci., 36(2), pp. 168–259. [CrossRef]
Haworth, D. C. , and Pope, S. B. , 2011, “ Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations,” Turbulent Combustion Modeling: Advances, New Trends and Perspectives, T. Echekki and E. Mastorakos , eds., Springer, The Netherlands, pp. 119–142.
Ottinger, H. C. , 1996, Stochastic Processes in Polymeric Fluids: Tools Examples for Developing Simulation Algorithms, Springer-Verlag, Berlin, Heidelberg.
Antoine, Y. , Lemoine, F. , and Lebouché, M. , 2001, “ Turbulent Transport a Passive Scalar in a Round Jet Discharging Into a Co-Flowing Stream,” Eur. J. Mech. B, 20(2), pp. 275–301. [CrossRef]
Durst, F. , and Schäfer, M. , 1996, “ A Parallel Blockstructured Multigrid Method for the Prediction Incompressible Flow,” Int. J. Numer. Methods Fluids, 22(6), pp. 549–565. [CrossRef]
Löhner, R. , 1995, “ Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids,” J. Comput. Phys., 118(2), pp. 307–313. [CrossRef]
Lubbers, C. L. , Brethouwer, G. , and Boersma, B. J. , 2001, “ Simulation the Mixing a Passive Scalar in a Round Turbulent Jet,” Fluid Dyn. Res., 28(3), pp. 189–208. [CrossRef]
Babu, P. C. , 2007, “ Simulation & Modeling Three Turbulent Flow Problems,” Ph.D. thesis, University Minnesota, Minneapolis, MN.
Sheikhi, M. R. H. , Drozda, T. G. , Givi, P. , Jaberi, F. A. , and Pope, S. B. , 2005, “ Large Eddy Simulation a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D),” Proc. Combust. Inst., 30(1), pp. 549–556. [CrossRef]
Townsend, A. A. , 1976, The Structure Turbulent Shear Flow, 2nd ed., Cambridge University Press, Cambridge, UK.
Dowling, D. R. , and Dimotakis, P. E. , 1990, “ Similarity on the Concentration Field Gas-Phase Turbulent Jets,” J. Fluid Mech., 218, pp. 109–141. [CrossRef]
Dahm, W. J. A. , 1985, “ Experiments on Entrainment, Mixing and Reaction in Turbulent Jets at Large Schmidt Number,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.

Figures

Grahic Jump Location
Fig. 1

Instantaneous radial distribution of the FDF at different axial positions (θ = 0) at (a) z/D = 15, (b) z/D = 30, (c) z/D = 50, (d) z/D = 60, (e) z/D = 70, and (f) z/D = 80

Grahic Jump Location
Fig. 2

Simulation of the streamwise concentration distribution along the jet centerline, with NPC as parameter

Grahic Jump Location
Fig. 3

Predicted mean (a) and RMS (b) concentration distribution across the jet at different downstream locations

Grahic Jump Location
Fig. 4

Radial mean (a) and fluctuation (b) concentration distribution across the jet for different cells in the axial direction. FDF simulation results (lines). Experimental data from Antoine et al. [33] (symbols): + x/D = 70; • x/D = 80; and × x/D = 90.

Grahic Jump Location
Fig. 5

Radial mean (a) and fluctuation (b) concentration distribution across the jet for different cells in radial direction. FDF simulation results (lines). Experimental data from Antoine et al. [33] (symbols): + x/D = 70; • x/D = 80; and × x/D = 90.

Grahic Jump Location
Fig. 6

Radial mean (a) and fluctuation (b) concentration distribution across the jet for different cells in angular direction. FDF simulation results (lines). Experimental data from Antoine et al. [33] (symbols): + x/D = 70; • x/D = 80; and × x/D = 90.

Grahic Jump Location
Fig. 7

SGS streamwise (a) and radial (b) scalar flux distribution across the jet. FDF simulation results (lines). Experimental data from Antoine et al. [33] (symbols): + x/D = 70; • x/D = 80; and × x/D = 90.

Grahic Jump Location
Fig. 8

Power spectra density of the scalar field using the SGS mixing time constant as parameter. Continuous line: CΩ = 1; dashed: CΩ = 8; and dotted: CΩ = 12.

Grahic Jump Location
Fig. 9

Time-averaged skewness (a) and kurtosis (b) of the FDF using the SGS mixing time constant as parameter. Continuous line: CΩ = 1; dashed: CΩ = 8; and dotted: CΩ = 12.

Grahic Jump Location
Fig. 10

Streamwise mean concentration distribution. Lines: simulation results. Symbol: experimental data from Antoine et al. [33]. The SGS mixing time constant, CΩ, appears as parameter.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In