Richtmyer,
R. D.
, 1960, “
Taylor Instability in Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math.,
13(2), pp. 297–319.

[CrossRef]
Meshkov,
E. E.
, 1969, “
Instability of the Interface of Two Gas Accelerated by a Shock Wave,” Izv., Acad. Sci., USSR Fluid Dyn.,
4, pp. 101–104.

Muller,
E.
,
Fryxell,
B.
, and
Arnett,
D.
, 1991, “
Instability and Clumping in SN 1987A,” Astron. Astrophys.,
251, pp. 505–514.

Lindl,
J.
, 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive,
AIP,
New York.

Kifonidis,
K.
,
Plewa,
T.
,
Scheck,
L.
,
Janka,
H. T.
, and
Müller,
E.
, 2006, “Non-Spherical Core Collapse Supernovae-II. The Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Their Implications for SN 1987 A,” Astronom. Astrophys.,
453(2), pp. 661–678.

Haan,
S. W.
,
Lindl,
J. D.
,
Callahan,
D. A.
,
Clark,
D. S.
,
Salmonson,
J. D.
,
Hammel,
B. A.
,
Atherton,
L. J.
,
Cook,
R. C.
,
Edwards,
M. J.
,
Glenzer,
S.
, and
Hamza,
A. V.
, 2011, “Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility,” Phys. Plasmas,
18(5), p. 051001.

[CrossRef]
Grinstein,
F. F.
,
Margolin,
L. G.
, and
Rider,
W. G.
, eds., 2010, Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics, 2nd printing,
Cambridge University,
New York.

Zhou,
Y.
,
Grinstein,
F. F.
,
Wachtor,
A. J.
, and
Haines,
B. M.
, 2014, “
Estimating the Effective Reynolds Number in Implicit Large Eddy Simulation,” Phys. Rev. E,
89(1), p. 013303.

[CrossRef]
Sagaut,
P.
, 2006, Large Eddy Simulation for Incompressible Flows, 3rd ed.,
Springer,
Berlin.

Zhou,
Y.
, 2001, “
A Scaling Analysis of Turbulent Flows Driven by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities,” Phys. Fluids,
13(2), pp. 538–543.

[CrossRef]
Clark,
T. T.
, and
Zhou,
Y.
, 2006, “
Growth Rate Exponents of Richtmyer–Meshkov Mixing Layers,” ASME J. Appl. Mech.,
73(3), pp. 461–468.

[CrossRef]
Tritschler,
V. K.
,
Zubel,
M.
,
Hickel,
S.
, and
Adams,
N. A.
, 2014, “
Evolution of Length Scales and Statistics of Richtmyer–Meshkov Instability From Direct Numerical Simulations,” Phys. Rev. E,
90(6), p. 063001.

[CrossRef]
Cohen,
R. H.
,
Dannevik,
W. P.
,
Dimits,
A. M.
,
Eliason,
D. E.
,
Mirin,
A. A.
,
Zhou,
Y.
,
Porter,
D. H.
, and
Woodward,
P. R.
, 2002, “
Three-Dimensional Simulation of a Richtmyer–Meshkov Instability With a Two-Scale Initial Perturbation,” Phys. Fluids,
14(10), pp. 3692–3709.

[CrossRef]
Lombardini,
M.
,
Pullin,
D. I.
, and
Meiron,
D. I.
, 2012, “
Transition to Turbulence in Shock-Driven Mixing: A Mach Number Study,” J. Fluid Mech.,
690, pp. 203–226.

[CrossRef]
Batchelor,
G. K.
, and
Proudman,
I.
, 1956, “
The Large-Scale Structure of Homogeneous Turbulence,” Philos. Trans. R. Soc. London, Ser. A,
248(949), pp. 369–405.

[CrossRef]
Zhou,
Y.
,
Matthaeus,
W. H.
, and
Dmitruk,
P.
, 2004, “
Colloquium: Magnetohydrodynamic Turbulence and Time Scales in Astrophysical and Space Plasmas,” Rev. Mod. Phys.,
76, pp. 1065–1035.

[CrossRef]
Zhou,
Y.
, and
Oughton,
S.
, 2011, “
Nonlocality and the Critical Reynolds Numbers of the Minimum State Magnetohydrodynamic Turbulence,” Phys. Plasmas,
18(7), p. 072304.

[CrossRef]
Zhou,
Y.
, 1995, “
A Phenomenological Treatment of Rotating Turbulence,” Phys. Fluids,
7(8), pp. 2092–2094.

[CrossRef]
Thornber,
B.
,
Mosedale,
A.
, and
Drikakis,
D.
, 2007, “
On the Implicit Large Eddy Simulation of Homogeneous Decaying Turbulence,” J. Comput. Phys.,
226(2), pp. 1902–1929.

[CrossRef]
Thornber,
B.
, and
Zhou,
Y.
, 2012, “
Energy Transfer in the Richtmyer–Meshkov Instability,” Phys. Rev. E,
86(5), p. 056302.

[CrossRef]
Garcia-Uceda Juarez,
A.
,
Raimo,
A.
,
Shapiro,
E.
, and
Thornber,
B.
, 2014, “
Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme,” AIAA J.,
52(11), pp. 2559–2575.

[CrossRef]
Shanmuganathan,
S.
,
Youngs,
D.
,
Griffond,
J.
,
Thornber,
B.
, and
Williams,
R.
, 2014, “
Accuracy of High-Order Density-Based Compressible Methods in Low Mach Vortical Flows,” Int. J. Numer. Methods Fluids,
74(5), pp. 335–358.

[CrossRef]
Probyn,
M.
,
Thornber,
B.
,
Drikakis,
D.
,
Youngs,
D.
, and
Williams,
R.
, 2014, “
An Investigation Into Non-Linear Growth Rate of Two-Dimensional and Three-Dimensional Single-Mode Richtmyer–Meshkov Instability Using an Arbitrary-Lagrangian–Eulerian Algorithm,” ASME J. Fluids Eng.,
136(9), p. 091208.

[CrossRef]
Thornber,
B.
,
Mosedale,
A.
,
Drikakis,
D.
,
Williams,
R. J. R.
, and
Youngs,
D.
, 2008, “
An Improved Reconstruction Method of Compressible Flows With Low Mach Number Features,” J. Comput. Phys.,
227(10), pp. 4873–4894.

[CrossRef]
Thornber,
B.
,
Drikakis,
D.
,
Youngs,
D. L.
, and
Williams,
R. J. R.
, 2010, “
The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability,” J. Fluid Mech.,
654, pp. 99–139.

[CrossRef]
Thornber,
B.
,
Drikakis,
D.
,
Youngs,
D. L.
, and
Williams,
R. J. R.
, 2011, “
Growth of a Richtmyer–Meshkov Turbulent Layer After Reshock,” Phys. Fluids,
23(9), p. 095107.

[CrossRef]
Aspden,
A.
,
Nikiforakis,
N.
,
Dalziel,
S.
, and
Bell,
J. B.
, 2008, “
Analysis of Implicit LES Methods,” Commun. Appl. Math. Comput. Sci.,
3(1), pp. 103–126.

[CrossRef]
Moin,
P.
, and
Mahesh,
K.
, 1998, “
Direct Numerical Simulation: A Tool in Turbulence Research,” Annu. Rev. Fluid Mech.,
30(1), pp. 539–578.

[CrossRef]
Saddoughi,
S. G.
, and
Veeravalli,
S. V.
, 1994, “
Local Isotropy in Turbulent Boundary Layers at High Reynolds Number,” J. Fluid Mech.,
268, pp. 333–372.

[CrossRef]
Tennekes,
H.
, and
Lumley,
J. L.
, 1972, First Course in Turbulence,
MIT,
Cambridge, MA.

Batchelor,
G. K.
, 1953, The Theory of Homogeneous Turbulence,
Cambridge University,
Cambridge, UK.

Zhou,
Y.
, 1993, “
Degree of Locality of Energy Transfer in the Inertial Range,” Phys. Fluids A,
5(5), pp. 1092–1094.

[CrossRef]
Zhou,
Y.
, 1993, “
Interacting Scales and Energy Transfer in Isotropic Turbulence,” Phys. Fluids A,
5(10), pp. 2511–2524.

[CrossRef]
Fureby,
C.
, and
Grinstein,
F. F.
, 1999, “
Monotonically Integrated Large Eddy Simulation of Free Shear Flows,” AIAA J.,
37(5), pp. 544–556.

[CrossRef]
Zhou,
Y.
, and
Speziale,
C. G.
, 1998, “
Advances in the Fundamental Aspects of Turbulence: Energy Transfer, Interacting Scales, and Self-Preservation in Isotropic Decay,” ASME Appl. Mech. Rev.,
51(4), pp. 267–301.

[CrossRef]
Sreenivasan,
K. R.
, 1998, “
An Update on the Energy Dissipation Rate in Isotropic Turbulence,” Phys. Fluids,
10(2), pp. 528–529.

[CrossRef]
Kaneda,
Y.
,
Ishihara,
T.
,
Yokokawa,
M.
,
Itakura,
K.
, and
Uno,
A.
, 2003, “
Energy Dissipation Rate and Energy Spectrum in High Resolution Direct Numerical Simulations of Turbulence in a Periodic Box,” Phys. Fluids,
15(2), pp. L21–L24.

[CrossRef]
Monin,
A. S.
, and
Yaglom,
A. M.
, 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol.
2,
MIT,
Cambridge, MA.

Bataille,
F.
,
Rubinstein,
R.
, and
Hussaini,
M. Y.
, 2005, “
Eddy Viscosity and Diffusivity Modeling,” Phys. Lett. A,
346(1–3), pp. 168–173.

[CrossRef]
Chollet,
J.
, 1984, “
Two-Point Closures as a Subgrid-Scale Modelling Tool for Large Eddy Simulations,” Turbulent Shear Flows IV,
Springer-Verlag, Berlin/Heidelberg, pp. 62–72.

Zhou,
Y.
, 2010, “
Renormalization Group Theory for Fluid and Plasma Turbulence,” Phys. Rep.,
488(1), p. 1.

[CrossRef]
Dimontakis,
P. E.
, 2000, “
The Mixing Transition in Turbulent Flows,” J. Fluid Mech.,
409, pp. 69–98.

[CrossRef]
Zhou,
Y.
, 2007, “
Unification and Extension of the Concepts of Similarity Criteria and Mixing Transition for Studying Astrophysics Using High Energy Density Laboratory Experiments or Numerical Simulations,” Phys. Plasmas,
14(8), p. 082701.

[CrossRef]
Zhou,
Y.
,
Robey,
H. F.
, and
Buckingham,
A. C.
, 2003, “
Onset of Turbulence in Accelerated High-Reynolds-Number Flow,” Phys. Rev. E,
67(5), p. 056305.

[CrossRef]
Zhou,
Y.
,
Remington,
B. A.
,
Robey,
H. F.
,
Cook,
A. W.
,
Glendinning,
S. G.
,
Dimits,
A.
,
Buckingham,
A. C.
,
Zimmerman,
G. B.
,
Burke,
E. W.
,
Peyser,
T. A.
,
Cabot,
W.
, and
Eliason,
D.
, 2003, “
Progress in Understanding Turbulent Mixing Induced by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities,” Phys. Plasmas,
10(5), pp. 1883–1896.

[CrossRef]
Domaradzki,
J. A.
,
Xiao,
Z.
, and
Smolarkiewicz,
P.
, 2003, “
Effective Eddy Viscosities in Implicit Large Eddy Simulations of Turbulent Flows,” Phys. Fluids,
15(12), pp. 3890–3893.

[CrossRef]
Domaradzki,
J. A.
, and
Radhakrishnan,
S.
, 2005, “
Effective Eddy Viscosities in Implicit Large Eddy Simulations of Decaying High Reynolds Number Turbulence With and Without Rotation,” Fluid Dyn. Res.,
36(4–6), pp. 385–406.

[CrossRef]
Castiglioni,
G.
, and
Domaradzki,
J. A.
, 2015, “
A Numerical Dissipation Rate and Viscosity in Flow Simulations With Realistic Geometry Using Low-Order Compressible Navier–Stokes Solvers,” Comput. Fluids,
119, pp. 37–46.

[CrossRef]
Schranner,
F. S.
,
Domaradzki,
J. A.
,
Hickel,
S.
, and
Adams,
N. A.
, 2015, “
Assessing the Numerical Dissipation Rate and Viscosity in Numerical Simulations of Fluid Flows,” Comput. Fluids,
114, pp. 84–97.

[CrossRef]
Olson,
B. J.
, and
Greenough,
J.
, 2014, “
Large Eddy Simulation Requirements for the Richtmyer–Meshkov Instability,” Phys. Fluids,
26(4), p. 044103.

[CrossRef]
Kolmogorov,
A. N.
, 1941, “
Decay of Isotropic Turbulence in Incompressible Viscous Fluids,” Docl. Akad. Nauk SSSR A,
31, pp. 538–541.

Hinze,
J.
, 1975, Turbulence, 2nd ed.,
McGraw-Hill, New York.

Oberlack,
M.
, 2002, “
On the Decay Exponent of Isotropic Turbulence,” Proc. Appl. Math. Mech.,
1(1), pp. 294–297.

[CrossRef]
Saffman,
P. G.
, 1967, “
The Large-Scale Structure of Homogeneous Turbulence,” J. Fluid Mech.,
27(03), pp. 581–593.

[CrossRef]
Sreenivasan,
K. R.
, and
Antonia,
R. A.
, 1997, “
The Phenomenology of Small-Scale Turbulence,” Annu. Rev. Fluid Mech.,
29(1), pp. 435–472.

[CrossRef]
Falkovich,
G.
, 1994, “
Bottleneck Phenomenon in Developed Turbulence,” Phys. Fluids,
6(4), pp. 1411–1414.

[CrossRef]
Ishihara,
T.
,
Gotoh,
T.
, and
Kaneda,
Y.
, 2008, “
Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation,” Annu. Rev. Fluid Mech.,
41, pp. 165–180.

[CrossRef]
Thormann,
A.
, and
Meneveau,
C.
, 2014, “
Decay of Homogeneous, Nearly Isotropic Turbulence Behind Active Fractal Grids,” Phys. Fluids,
26(2), p. 025112.

[CrossRef]
Andrews,
M. J.
,
Youngs,
D. L.
,
Livescu,
D.
, and
Wei,
T.
, 2014, “
Computational Studies of Two-Dimensional Rayleigh–Taylor Driven Mixing for a Tilted-Rig,” ASME J. Fluids Eng.,
136(9), p. 091212.

[CrossRef]