0
Research Papers: Fundamental Issues and Canonical Flows

A Comparison of Three Approaches to Compute the Effective Reynolds Number of the Implicit Large-Eddy Simulations

[+] Author and Article Information
Ye Zhou

Lawrence Livermore National Laboratory,
Livermore, CA 94550

Ben Thornber

School of Aerospace, Mechanical and
Mechatronic Engineering,
The University of Sydney,
Sydney, New South Wales 2006, Australia

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received March 4, 2015; final manuscript received November 11, 2015; published online April 12, 2016. Assoc. Editor: Daniel Livescu.The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

J. Fluids Eng 138(7), 070905 (Apr 12, 2016) (7 pages) Paper No: FE-15-1139; doi: 10.1115/1.4032532 History: Received March 04, 2015; Revised November 11, 2015

The implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Richtmyer, R. D. , 1960, “ Taylor Instability in Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math., 13(2), pp. 297–319. [CrossRef]
Meshkov, E. E. , 1969, “ Instability of the Interface of Two Gas Accelerated by a Shock Wave,” Izv., Acad. Sci., USSR Fluid Dyn., 4, pp. 101–104.
Muller, E. , Fryxell, B. , and Arnett, D. , 1991, “ Instability and Clumping in SN 1987A,” Astron. Astrophys., 251, pp. 505–514.
Lindl, J. , 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive, AIP, New York.
Kifonidis, K. , Plewa, T. , Scheck, L. , Janka, H. T. , and Müller, E. , 2006, “Non-Spherical Core Collapse Supernovae-II. The Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Their Implications for SN 1987 A,” Astronom. Astrophys., 453(2), pp. 661–678.
Haan, S. W. , Lindl, J. D. , Callahan, D. A. , Clark, D. S. , Salmonson, J. D. , Hammel, B. A. , Atherton, L. J. , Cook, R. C. , Edwards, M. J. , Glenzer, S. , and Hamza, A. V. , 2011, “Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility,” Phys. Plasmas, 18(5), p. 051001. [CrossRef]
Grinstein, F. F. , Margolin, L. G. , and Rider, W. G. , eds., 2010, Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics, 2nd printing, Cambridge University, New York.
Zhou, Y. , Grinstein, F. F. , Wachtor, A. J. , and Haines, B. M. , 2014, “ Estimating the Effective Reynolds Number in Implicit Large Eddy Simulation,” Phys. Rev. E, 89(1), p. 013303. [CrossRef]
Sagaut, P. , 2006, Large Eddy Simulation for Incompressible Flows, 3rd ed., Springer, Berlin.
Zhou, Y. , 2001, “ A Scaling Analysis of Turbulent Flows Driven by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities,” Phys. Fluids, 13(2), pp. 538–543. [CrossRef]
Clark, T. T. , and Zhou, Y. , 2006, “ Growth Rate Exponents of Richtmyer–Meshkov Mixing Layers,” ASME J. Appl. Mech., 73(3), pp. 461–468. [CrossRef]
Tritschler, V. K. , Zubel, M. , Hickel, S. , and Adams, N. A. , 2014, “ Evolution of Length Scales and Statistics of Richtmyer–Meshkov Instability From Direct Numerical Simulations,” Phys. Rev. E, 90(6), p. 063001. [CrossRef]
Cohen, R. H. , Dannevik, W. P. , Dimits, A. M. , Eliason, D. E. , Mirin, A. A. , Zhou, Y. , Porter, D. H. , and Woodward, P. R. , 2002, “ Three-Dimensional Simulation of a Richtmyer–Meshkov Instability With a Two-Scale Initial Perturbation,” Phys. Fluids, 14(10), pp. 3692–3709. [CrossRef]
Lombardini, M. , Pullin, D. I. , and Meiron, D. I. , 2012, “ Transition to Turbulence in Shock-Driven Mixing: A Mach Number Study,” J. Fluid Mech., 690, pp. 203–226. [CrossRef]
Batchelor, G. K. , and Proudman, I. , 1956, “ The Large-Scale Structure of Homogeneous Turbulence,” Philos. Trans. R. Soc. London, Ser. A, 248(949), pp. 369–405. [CrossRef]
Zhou, Y. , Matthaeus, W. H. , and Dmitruk, P. , 2004, “ Colloquium: Magnetohydrodynamic Turbulence and Time Scales in Astrophysical and Space Plasmas,” Rev. Mod. Phys., 76, pp. 1065–1035. [CrossRef]
Zhou, Y. , and Oughton, S. , 2011, “ Nonlocality and the Critical Reynolds Numbers of the Minimum State Magnetohydrodynamic Turbulence,” Phys. Plasmas, 18(7), p. 072304. [CrossRef]
Zhou, Y. , 1995, “ A Phenomenological Treatment of Rotating Turbulence,” Phys. Fluids, 7(8), pp. 2092–2094. [CrossRef]
Thornber, B. , Mosedale, A. , and Drikakis, D. , 2007, “ On the Implicit Large Eddy Simulation of Homogeneous Decaying Turbulence,” J. Comput. Phys., 226(2), pp. 1902–1929. [CrossRef]
Thornber, B. , and Zhou, Y. , 2012, “ Energy Transfer in the Richtmyer–Meshkov Instability,” Phys. Rev. E, 86(5), p. 056302. [CrossRef]
Garcia-Uceda Juarez, A. , Raimo, A. , Shapiro, E. , and Thornber, B. , 2014, “ Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme,” AIAA J., 52(11), pp. 2559–2575. [CrossRef]
Shanmuganathan, S. , Youngs, D. , Griffond, J. , Thornber, B. , and Williams, R. , 2014, “ Accuracy of High-Order Density-Based Compressible Methods in Low Mach Vortical Flows,” Int. J. Numer. Methods Fluids, 74(5), pp. 335–358. [CrossRef]
Probyn, M. , Thornber, B. , Drikakis, D. , Youngs, D. , and Williams, R. , 2014, “ An Investigation Into Non-Linear Growth Rate of Two-Dimensional and Three-Dimensional Single-Mode Richtmyer–Meshkov Instability Using an Arbitrary-Lagrangian–Eulerian Algorithm,” ASME J. Fluids Eng., 136(9), p. 091208. [CrossRef]
Thornber, B. , Mosedale, A. , Drikakis, D. , Williams, R. J. R. , and Youngs, D. , 2008, “ An Improved Reconstruction Method of Compressible Flows With Low Mach Number Features,” J. Comput. Phys., 227(10), pp. 4873–4894. [CrossRef]
Thornber, B. , Drikakis, D. , Youngs, D. L. , and Williams, R. J. R. , 2010, “ The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability,” J. Fluid Mech., 654, pp. 99–139. [CrossRef]
Thornber, B. , Drikakis, D. , Youngs, D. L. , and Williams, R. J. R. , 2011, “ Growth of a Richtmyer–Meshkov Turbulent Layer After Reshock,” Phys. Fluids, 23(9), p. 095107. [CrossRef]
Aspden, A. , Nikiforakis, N. , Dalziel, S. , and Bell, J. B. , 2008, “ Analysis of Implicit LES Methods,” Commun. Appl. Math. Comput. Sci., 3(1), pp. 103–126. [CrossRef]
Moin, P. , and Mahesh, K. , 1998, “ Direct Numerical Simulation: A Tool in Turbulence Research,” Annu. Rev. Fluid Mech., 30(1), pp. 539–578. [CrossRef]
Saddoughi, S. G. , and Veeravalli, S. V. , 1994, “ Local Isotropy in Turbulent Boundary Layers at High Reynolds Number,” J. Fluid Mech., 268, pp. 333–372. [CrossRef]
Tennekes, H. , and Lumley, J. L. , 1972, First Course in Turbulence, MIT, Cambridge, MA.
Batchelor, G. K. , 1953, The Theory of Homogeneous Turbulence, Cambridge University, Cambridge, UK.
Zhou, Y. , 1993, “ Degree of Locality of Energy Transfer in the Inertial Range,” Phys. Fluids A, 5(5), pp. 1092–1094. [CrossRef]
Zhou, Y. , 1993, “ Interacting Scales and Energy Transfer in Isotropic Turbulence,” Phys. Fluids A, 5(10), pp. 2511–2524. [CrossRef]
Fureby, C. , and Grinstein, F. F. , 1999, “ Monotonically Integrated Large Eddy Simulation of Free Shear Flows,” AIAA J., 37(5), pp. 544–556. [CrossRef]
Zhou, Y. , and Speziale, C. G. , 1998, “ Advances in the Fundamental Aspects of Turbulence: Energy Transfer, Interacting Scales, and Self-Preservation in Isotropic Decay,” ASME Appl. Mech. Rev., 51(4), pp. 267–301. [CrossRef]
Sreenivasan, K. R. , 1998, “ An Update on the Energy Dissipation Rate in Isotropic Turbulence,” Phys. Fluids, 10(2), pp. 528–529. [CrossRef]
Kaneda, Y. , Ishihara, T. , Yokokawa, M. , Itakura, K. , and Uno, A. , 2003, “ Energy Dissipation Rate and Energy Spectrum in High Resolution Direct Numerical Simulations of Turbulence in a Periodic Box,” Phys. Fluids, 15(2), pp. L21–L24. [CrossRef]
Monin, A. S. , and Yaglom, A. M. , 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT, Cambridge, MA.
Bataille, F. , Rubinstein, R. , and Hussaini, M. Y. , 2005, “ Eddy Viscosity and Diffusivity Modeling,” Phys. Lett. A, 346(1–3), pp. 168–173. [CrossRef]
Chollet, J. , 1984, “ Two-Point Closures as a Subgrid-Scale Modelling Tool for Large Eddy Simulations,” Turbulent Shear Flows IV, Springer-Verlag, Berlin/Heidelberg, pp. 62–72.
Zhou, Y. , 2010, “ Renormalization Group Theory for Fluid and Plasma Turbulence,” Phys. Rep., 488(1), p. 1. [CrossRef]
Dimontakis, P. E. , 2000, “ The Mixing Transition in Turbulent Flows,” J. Fluid Mech., 409, pp. 69–98. [CrossRef]
Zhou, Y. , 2007, “ Unification and Extension of the Concepts of Similarity Criteria and Mixing Transition for Studying Astrophysics Using High Energy Density Laboratory Experiments or Numerical Simulations,” Phys. Plasmas, 14(8), p. 082701. [CrossRef]
Zhou, Y. , Robey, H. F. , and Buckingham, A. C. , 2003, “ Onset of Turbulence in Accelerated High-Reynolds-Number Flow,” Phys. Rev. E, 67(5), p. 056305. [CrossRef]
Zhou, Y. , Remington, B. A. , Robey, H. F. , Cook, A. W. , Glendinning, S. G. , Dimits, A. , Buckingham, A. C. , Zimmerman, G. B. , Burke, E. W. , Peyser, T. A. , Cabot, W. , and Eliason, D. , 2003, “ Progress in Understanding Turbulent Mixing Induced by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities,” Phys. Plasmas, 10(5), pp. 1883–1896. [CrossRef]
Domaradzki, J. A. , Xiao, Z. , and Smolarkiewicz, P. , 2003, “ Effective Eddy Viscosities in Implicit Large Eddy Simulations of Turbulent Flows,” Phys. Fluids, 15(12), pp. 3890–3893. [CrossRef]
Domaradzki, J. A. , and Radhakrishnan, S. , 2005, “ Effective Eddy Viscosities in Implicit Large Eddy Simulations of Decaying High Reynolds Number Turbulence With and Without Rotation,” Fluid Dyn. Res., 36(4–6), pp. 385–406. [CrossRef]
Castiglioni, G. , and Domaradzki, J. A. , 2015, “ A Numerical Dissipation Rate and Viscosity in Flow Simulations With Realistic Geometry Using Low-Order Compressible Navier–Stokes Solvers,” Comput. Fluids, 119, pp. 37–46. [CrossRef]
Schranner, F. S. , Domaradzki, J. A. , Hickel, S. , and Adams, N. A. , 2015, “ Assessing the Numerical Dissipation Rate and Viscosity in Numerical Simulations of Fluid Flows,” Comput. Fluids, 114, pp. 84–97. [CrossRef]
Olson, B. J. , and Greenough, J. , 2014, “ Large Eddy Simulation Requirements for the Richtmyer–Meshkov Instability,” Phys. Fluids, 26(4), p. 044103. [CrossRef]
Kolmogorov, A. N. , 1941, “ Decay of Isotropic Turbulence in Incompressible Viscous Fluids,” Docl. Akad. Nauk SSSR A, 31, pp. 538–541.
Hinze, J. , 1975, Turbulence, 2nd ed., McGraw-Hill, New York.
Oberlack, M. , 2002, “ On the Decay Exponent of Isotropic Turbulence,” Proc. Appl. Math. Mech., 1(1), pp. 294–297. [CrossRef]
Saffman, P. G. , 1967, “ The Large-Scale Structure of Homogeneous Turbulence,” J. Fluid Mech., 27(03), pp. 581–593. [CrossRef]
Sreenivasan, K. R. , and Antonia, R. A. , 1997, “ The Phenomenology of Small-Scale Turbulence,” Annu. Rev. Fluid Mech., 29(1), pp. 435–472. [CrossRef]
Falkovich, G. , 1994, “ Bottleneck Phenomenon in Developed Turbulence,” Phys. Fluids, 6(4), pp. 1411–1414. [CrossRef]
Ishihara, T. , Gotoh, T. , and Kaneda, Y. , 2008, “ Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation,” Annu. Rev. Fluid Mech., 41, pp. 165–180. [CrossRef]
Thormann, A. , and Meneveau, C. , 2014, “ Decay of Homogeneous, Nearly Isotropic Turbulence Behind Active Fractal Grids,” Phys. Fluids, 26(2), p. 025112. [CrossRef]
Andrews, M. J. , Youngs, D. L. , Livescu, D. , and Wei, T. , 2014, “ Computational Studies of Two-Dimensional Rayleigh–Taylor Driven Mixing for a Tilted-Rig,” ASME J. Fluids Eng., 136(9), p. 091212. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The time variation of the key properties of the HDT flow field: (a) time variation of integral length (left), (b) turbulent kinetic energy (middle), and (c) enstrophy (right)

Grahic Jump Location
Fig. 2

Turbulent kinetic energy spectra (left) and compensated spectra (right) as a function of time

Grahic Jump Location
Fig. 3

Effective Reynolds number for all models (left) and a close-up of models A and B (right)

Grahic Jump Location
Fig. 4

Eddy viscosities computed using models A and B, respectively

Grahic Jump Location
Fig. 5

Integral length plotted against the Taylor microscale for the duration of the simulation

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In