Godeferd,
F. S.
, and
Cambon,
C.
, 1994, “
Detailed Investigation of Energy Transfers in Homogeneous Stratified Turbulence,” Phys. Fluids,
6(6), pp. 2084–2100.

[CrossRef]
Griffond,
J.
,
Gréa,
B. J.
, and
Soulard,
O.
, 2014, “
Unstably Stratified Homogeneous Turbulence as a Tool for Turbulent Mixing Modeling,” ASME J. Fluids Eng.,
136(9), p. 091201.

[CrossRef]
Batchelor,
G. K.
,
Canuto, V
. M.
, and
Chasnov,
J. R.
, 1992, “
Homogeneous Buoyancy-Generated Turbulence,” J. Fluid Mech.,
235(2), pp. 349–378.

[CrossRef]
Livescu,
D.
, and
Ristorcelli,
J. R.
, 2007, “
Buoyancy-Driven Variable-Density Turbulence,” J. Fluid Mech.,
591(11), pp. 43–71.

Chung,
D.
, and
Pullin,
D.
, 2009, “
Direct Numerical Simulation and Large-Eddy Simulation of Stationary Buoyancy-Driven Turbulence,” J. Fluid Mech.,
643, pp. 279–308.

[CrossRef]
Lazier,
J.
,
Hendry,
R.
,
Clarke,
A.
,
Yashayaev,
I.
, and
Rhines,
P.
, 2002, “
Convection and Restratification in the Labrador Sea, 1990–2000,” Deep Sea Res. Part I: Oceanogr. Res. Pap.,
49(10), pp. 1819–1835.

[CrossRef]
Soulard,
O.
,
Griffond,
J.
, and
Gréa,
B.-J.
, 2014, “
Large-Scale Analysis of Self-Similar Unstably Stratified Homogeneous Turbulence,” Phys. Fluids,
26(1), p. 015110.

Burlot,
A.
,
Gréa,
B.-J.
,
Godeferd,
F. S.
,
Cambon,
C.
, and
Soulard,
O.
, 2015, “
Large Reynolds Number Self-Similar States of Unstably Stratified Homogeneous Turbulence,” Phys. Fluids,
27(6), p. 065114.

[CrossRef]
Thoroddsen,
S. T.
,
Van Atta,
C. W.
, and
Yampolsky,
J. S.
, 1998, “
Experiments on Homogeneous Turbulence in an Unstably Stratified Fluid,” Phys. Fluids,
10(12), pp. 3155–3167.

[CrossRef]
Batchelor,
G. K.
, 1949, “
The Role of Big Eddies in Homogeneous Turbulence,” Proc. R. Soc. London, Ser. A,
195(1043), pp. 513–532.

[CrossRef]
Llor,
A.
, 2011, “
Langevin Equation of Big Structure Dynamics in Turbulence: Landaus Invariant in the Decay of Homogeneous Isotropic Turbulence,” Eur. J. Mech. B/Fluids,
30(5), pp. 480–504.

[CrossRef]
Poujade,
O.
, and
Peybernes,
M.
, 2010, “
Growth Rate of Rayleigh–Taylor Turbulent Mixing Layers With the Foliation Approach,” Phys. Rev. E,
81(1), p. 016316.

[CrossRef]
Youngs,
D. L.
, 1984, “
Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability,” Physica D,
12(13), pp. 32–44.

[CrossRef]
Dimonte,
G.
,
Youngs,
D. L.
,
Dimits,
A.
,
Weber,
S.
,
Marinak,
M.
,
Wunsch,
S.
,
Garasi,
C.
,
Robinson,
A.
,
Andrews,
M. J.
,
Ramaprabhu,
P.
,
Calder,
A. C.
,
Fryxell,
B.
,
Biello,
J.
,
Dursi,
L.
,
MacNeice,
P.
,
Olson,
K.
,
Ricker,
P.
,
Rosner,
R.
,
Timmes,
F.
,
Tufo,
H.
,
Young,
Y.-N.
, and
Zingale,
M.
, 2004, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration,” Phys. Fluids,
16(5), pp. 1668–1693.

[CrossRef]
Livescu,
D.
,
Wei,
T.
, and
Peterson,
M. R.
, 2011, “
Direct Numerical Simulations of Rayleigh–Taylor Instability,” J. Phys.: Conf. Ser.,
318(082007), pp. 1–10.

Youngs,
D. L.
, 2013, “
The Density Ratio Dependence of Self-Similar Rayleigh–Taylor Mixing,” Philos. Trans. R. Soc. London, Ser. A,
371(2003), pp. 1–15.

[CrossRef]
Dimonte,
G.
, 2000, “
Spanwise Homogeneous Buoyancy-Drag Model for Rayleigh–Taylor Mixing and Experimental Evaluation,” Phys. Plasma,
7(6), pp. 2255–2269.

[CrossRef]
Dimonte,
G.
,
Ramaprabhu,
P.
, and
Andrews,
M.
, 2007, “
Rayleigh–Taylor Instability With Complex Acceleration History,” Phys. Rev. E,
76(4), p. 046313.

[CrossRef]
Ramaprabhu,
P.
,
Karkhanis,
V.
, and
Lawrie,
A. G. W.
, 2013, “
The Rayleigh–Taylor Instability Driven by an Accel-Decel-Accel Profile,” Phys. Fluids,
25(11), pp. 1–33.

[CrossRef]
Burlot,
A.
,
Gréa,
B.-J.
,
Godeferd,
F. S.
,
Cambon,
C.
, and
Griffond,
J.
, 2015, “
Spectral Modelling of High Reynolds Number Unstably Stratified Homogeneous Turbulence,” J. Fluid Mech.,
765, pp. 17–44.

[CrossRef]
Gauthier,
S.
, and
Bonnet,
M.
, 1990, “
A

*k*–

*ε* Model for Turbulent Mixing in Shock-Tube Flows Induced by Rayleigh–Taylor Instability,” Phys. Fluids A,
2(9), pp. 1685–1694.

[CrossRef]
Grégoire,
O.
,
Souffland,
D.
, and
Gauthier,
S.
, 2005, “
A Second-Order Turbulence Model for Gaseous Mixtures Induced by Richtmyer–Meshkov Instability,” J. Turbul.,
6(29), pp. 1–20.

Llor,
A.
, and
Bailly,
P.
, 2003, “
A New Turbulent Two-Field Concept for Modeling Rayleigh–Taylor, Richmyers–Meshkov, and Kelvin–Helmholtz Mixing Layers,” Laser Part. Beams,
21(7), pp. 311–315.

Griffond,
J.
,
Gréa,
B.-J.
, and
Soulard,
O.
, 2015, “
Numerical Investigation of Self-Similar Unstably Stratified Homogeneous Turbulence,” ASME J. Turbul.,
16(2), pp. 167–183.

[CrossRef]
Grinstein,
F. F.
,
Margolin,
L. G.
, and
Rider,
W. J.
, 2007, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics,
Cambridge University, Cambridge, UK.

Zhou,
Y.
, 2010, “
Renormalization Group Theory for Fluid and Plasma Turbulence,” Phys. Rep.,
488(1), pp. 1–49.

[CrossRef]
Lesieur,
M.
, 2008, Turbulence in Fluids, Fluid Mechanics and Its Applications Series,
Springer, Berlin.

Chen,
S.
,
Doolen,
G.
,
Herring,
J. R.
,
Kraichnan,
R. H.
,
Orszag,
S. A.
, and
She,
Z. S.
, 1993, “
Far-Dissipation Range of Turbulence,” Phys. Rev. Lett.,
70(20), pp. 3051–3054.

[CrossRef] [PubMed]
Canuto,
V. M.
,
Dubovikov,
M. S.
, and
Dienstfrey,
A.
, 1997, “
A Dynamical Model for Turbulence. IV. Buoyancy-Driven Flows,” Phys. Fluids,
9(7), pp. 2118–2131.

[CrossRef]
Zhou,
Y.
,
Robey,
H. F.
, and
Buckingham,
A. C.
, 2003, “
Onset of Turbulence in Accelerated High-Reynolds-Number Flow,” Phys. Rev. E,
67(5), p. 056305.

[CrossRef]
Hanazaki,
H.
, and
Hunt,
J. C. R.
, 1996, “
Linear Processes in Unsteady Stably Stratified Turbulence,” J. Fluid Mech.,
318(6), pp. 303–337.

[CrossRef]
Gréa,
B.-J.
, 2013, “
The Rapid Acceleration Model and the Growth Rate of a Turbulent Mixing Zone Induced by Rayleigh–Taylor Instability,” Phys. Fluids,
25(1), p. 015118.

[CrossRef]
Johnson,
B. M.
, and
Schilling,
O.
, 2011, “
Reynolds‐Averaged Navier–Stokes Model Predictions of Linear Instability. i: Buoyancy- and Shear-Driven Flows,” J. Turbul.,
12(36), pp. 1–38.

[CrossRef]
Mueschke,
N. J.
, and
Schilling,
O.
, 2009, “
Investigation of Rayleigh–Taylor Turbulence and Mixing Using Direct Numerical Simulation With Experimentally Measured Initial Conditions. II. Dynamics of Transitional Flow and Mixing Statistics,” Phys. Fluids,
21(1), p. 014107.

Schilling,
O.
, 2010, “
Rayleigh–Taylor Turbulent Mixing: Synergy Between Simulations, Experiments, and Modeling,” 12th International Workshop on the Physics of Compressible Turbulent Mixing, Moscow.

Schilling,
O.
, and
Mueschke,
N. J.
, 2010, “
Analysis of Turbulent Transport and Mixing in Transitional Rayleigh–Taylor Unstable Flow Using Direct Numerical Simulation Data,” Phys. Fluids,
22(10), p. 105102.

Souffland,
D.
,
Soulard,
O.
, and
Griffond,
J.
, 2014, “
Modeling of Reynolds Stress Models for Diffusion Fluxes Inside Shock Waves,” ASME J. Fluids Eng.,
136(9), p. 091102.

Schwarzkopf,
J. D.
,
Livescu,
D.
,
Gore,
R. A.
,
Rauenzahn,
R. M.
, and
Ristorcelli,
J. R.
, 2011, “
Application of a Second-Moment Closure Model to Mixing Processes Involving Multicomponent Miscible Fluids,” ASME J. Turbul.,
12(49), pp. 1–35.

Watteaux,
R.
, 2012, “
Détection des grandes structures turbulentes dans les couches de mélange de type Rayleigh–Taylor en vue de la validation de modèles statistiques turbulents bi-structure,” Ph.D. thesis, Thèse de doctorat en Science de l'Ecole Normale Supérieure de Cachan, Cachan.

Gréa,
B.-J.
, 2015, “
The Dynamics of the

*k ε* Mix Model Toward its Self-Similar Rayleigh–Taylor Solution,” ASME J. Turbul.,
16(2), pp. 184–202.

[CrossRef]
Schiestel,
R.
, 2008, Modeling and Simulation of Turbulent Flows,
Wiley, New York.

Banerjee,
A.
,
Gore,
R. A.
, and
Andrews,
M. J.
, 2010, “
Development and Validation of a Turbulent-Mix Model for Variable-Density and Compressible Flows,” Phys. Rev. E,
82(4), p. 046309.

[CrossRef]