0
Research Papers: Multiphase Flows

Modeling Dilute Gas–Solid Flows Using a Polykinetic Moment Method Approach

[+] Author and Article Information
Dennis M. Dunn

School for Engineering of Matter,
Transport and Energy,
Arizona State University
Tempe, AZ 85287-6106
e-mail: dennis.dunn@asu.edu

Kyle D. Squires

School for Engineering of Matter,
Transport and Energy,
Arizona State University
Tempe, AZ 85287-6106
e-mail: squires@asu.edu

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 16, 2014; final manuscript received August 20, 2015; published online December 8, 2015. Assoc. Editor: E.E. Michaelides.

J. Fluids Eng 138(4), 041303 (Dec 08, 2015) (12 pages) Paper No: FE-14-1755; doi: 10.1115/1.4031687 History: Received December 16, 2014; Revised August 20, 2015

Modeling a dilute suspension of particles in a polykinetic Eulerian framework is described using the conditional quadrature method of moments (CQMOM). The particular regimes of interest are multiphase flows comprised of particles with diameters small compared to the smallest length scale of the turbulent carrier flow and particle material densities much larger than that of the fluid. These regimes correspond to moderate granular Knudsen number and large particle Stokes numbers in which interparticle collisions and/or particle trajectory crossing (PTC) can be significant. The probability density function (PDF) of the particle velocity space is discretized with a two-point quadrature, the minimum resolution required to capture PTC which is common to these flows. Both two-dimensional (2D) test cases (designed to assess numerical procedures) and a three-dimensional (3D) fully developed particle-laden turbulent channel flow were implemented for collisionless particles. The driving gas-phase carrier flow is computed using direct numerical simulation of the incompressible Navier–Stokes (N–S) equations and one-way coupled to the particle phase via the drag force. Visualizations and statistical descriptors demonstrate that CQMOM predicts physical features such as PTC, particle accumulation near the channel walls, and more uniform particle velocity profiles relative to the carrier flow. The improvements in modeling compared to monokinetic representations are highlighted.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gad-El-Hak, M. , 2006, “ Gas and Liquid Transport at the Microscale,” Heat Transfer Eng., 27(4), pp. 13–29. [CrossRef]
Fox, R. O. , 2012, “ Large-Eddy-Simulation Tools for Multiphase Flows,” Fluid Mech., 44(1), pp. 47–76. [CrossRef]
Yuan, C. , and Fox, R. O. , 2011, “ Conditional Quadrature Method of Moments for Kinetic Equations,” J. Comput. Phys., 230(22), pp. 8216–8246. [CrossRef]
Fox, R. O. , 2008, “ A Quadrature-Based Third-Order Moment Method for Dilute Gas-Particle Flows,” J. Comput. Phys., 227(12), pp. 6313–6350. [CrossRef]
Marchisio, D. L. , Vigil, R. D. , and Fox, R. O. , 2002, “ Quadrature Method of Moments for Aggregation-Breakage Processes,” J. Colloid Interface Sci., 258(2), pp. 322–334. [CrossRef]
Marchisio, D. L. , and Fox, R. O. , 2013, Computational Models for Polydisperse Particulate and Multiphase Systems, Cambridge University Press, Cambridge, UK.
McGraw, R. , 1997, “ Description of Aerosol Dynamics by the Quadrature Method of Moments,” Aerosol Sci. Technol., 27(2), pp. 255–265. [CrossRef]
Fox, R. O. , Laurent, F. , and Massot, M. , 2008, “ Numerical Simulation of Spray Coalescence in an Eulerian Framework: Direct Quadrature Method of Moments and Multi-Fluid Method,” J. Comput. Phys., 227(6), pp. 3058–3088. [CrossRef]
Buffo, A. , Vanni, M. , and Marchisio, D. , 2011, “ Multidimensional Population Balance Model for the Simulation of Turbulent Gas-Liquid Systems in Stirred Tank Reactors,” Chem. Eng. Sci., 70, pp. 31–44. [CrossRef]
Buffo, A. , Vanni, M. , Marchisio, D. L. , and Fox, R. O. , 2013, “ Multivariate Quadrature-Based Moments Methods for Turbulent Polydisperse Gas-Liquid Systems,” Int. J. Multiphase Flow, 50, pp. 41–57. [CrossRef]
Petitti, M. , Vanni, M. , Marchisio, D. L. , Buffo, A. , and Podenzani, F. , 2013, “ Simulation of Coalescence, Break-Up and Mass Transfer in a Gas-Liquid Stirred Tank With CQMOM,” Chem. Eng. J., 228, pp. 1182–1194. [CrossRef]
Yuan, C. , Kong, B. , Passalacqua, A. , and Fox, R. O. , 2014, “ An Extended Quadrature-Based Mass-Velocity Moment Model for Polydisperse Bubbly Flows,” Can. J. Chem. Eng., 92(12), pp. 2053–2066. [CrossRef]
Kah, D. , Laurent, F. , Fréret, L. , de Chaisemartin, S. , Fox, R. O. , Reveillon, J. , and Massot, M. , 2010, “ Eulerian Quadrature-Based Moment Models for Dilute Polydisperse Evaporating Sprays,” Flow, Turbul. Combust., 85(3), pp. 649–676. [CrossRef]
Marchisio, D. L. , Vigil, R. D. , and Fox, R. O. , 2003, “ Implementation of the Quadrature Method of Moments in CFD Codes for Aggregation-Breakage Problems,” Chem. Eng. Sci., 58(15), pp. 3337–3351. [CrossRef]
Marchisio, D. L. , and Fox, R. O. , 2005, “ Solution of Population Balance Equations Using the Direct Quadrature Method of Moments,” J. Aerosol Sci., 36(1), pp. 43–73. [CrossRef]
Mazzei, L. , Marchisio, D. L. , and Lettieri, P. , 2012, “ New Quadrature-Based Moment Method for the Mixing of Inert Polydisperse Fluidized Powders in Commercial CFD Codes,” Am. Inst. Chem. Eng., 58(10), pp. 3054–3069. [CrossRef]
Vié, A. , Masi, E. , Simonin, O. , and Massot, M. , 2012, “ On the Direct Numerical Simulation of Moderate-Stokes-Number Turbulent Particulate Flows Using Algebraic-Closure-Based and Kinetic-Based Moment Methods,” Center for Turbulence Research, Summer Program 2012, July 1.
Crowe, C. , Sommerfeld, M. , and Tsuji, Y. , 1998, Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton.
Balachandar, S. , and Eaton, J. K. , 2010, “ Turbulent Dispersed Multiphase Flow,” Annu. Rev. Fluid Mech., 42(1), pp. 111–133. [CrossRef]
Février, P. , Simonin, O. , and Squires, K. D. , 2005, “ Partitioning of Particle Velocities in Gas-Solid Turbulent Flows Into a Continuous Field and a Spatially Uncorrelated Random Distribution: Theoretical Formalism and Numerical Study,” J. Fluid Mech., 533, pp. 1–46. [CrossRef]
Beylich, A. E. , 2000, “ Solving the Kinetic Equation for All Knudsen Numbers,” Phys. Fluids, 12(2), pp. 444–465. [CrossRef]
Bird, G. A. , 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Vol. 42, Clarendon Press, Oxford, UK.
Fox, R. O. , 2009, “ Higher-Order Quadrature-Based Moment Methods for Kinetic Equations,” J. Comput. Phys., 228(20), pp. 7771–7791. [CrossRef]
Emre, O. , Kah, D. , Jay, S. , Tran, Q.-H. , Velghe, A. , Chaisemartin, S. D. , Fox, R. O. , Laurent, F. , and Massot, M. , 2014, “ Eulerian Moment Methods for Automotive Sprays,” Atomization Sprays, 25(3), pp. 189–254.
Fox, R. O. , and Vedula, P. , 2010, “ Quadrature-Based Moment Model for Moderately Dense Polydisperse Gas-Particle Flows,” Ind. Eng. Chem. Res., 49(11), pp. 5174–5187. [CrossRef]
Vance, M. W. , and Squires, K. D. , 2002, “ An Approach to Parallel Computing in an Eulerian–Lagrangian Two-Phase Flow Model,” ASME Paper No. FEDSM2002-31225.
Wang, Q. , and Squires, K. D. , 1996, “ Large Eddy Simulation of Particle-Laden Turbulent Channel Flow,” Phys. Fluids, 8(5), pp. 1207–1223. [CrossRef]
Mallouppas, G. , and van Wachem, B. , 2013, “ Large Eddy Simulations of Particle-Laden Turbulent Channel Flow,” Int. J. Multiphase Flow, 54, pp. 65–75. [CrossRef]
Vance, M. W. , Squires, K. D. , and Simonin, O. , 2006, “ Properties of the Particle Velocity Field in Gas-Solid Turbulent Channel Flow,” Phys. Fluids, 18(6), p. 063302. [CrossRef]
Kuerten, J. G. M. , 2006, “ Subgrid Modeling in Particle-Laden Channel Flow,” Phys. Fluids, 18(2), p. 025108. [CrossRef]
Arcen, B. , Tanière, A. , and Oesterlé, B. , 2006, “ On the Influence of Near-Wall Forces in Particle-Laden Channel Flows,” Int. J. Multiphase Flow, 32(12), pp. 1326–1339. [CrossRef]
Capecelatro, J. , and Desjardins, O. , 2013, “ An Euler–Lagrange Strategy for Simulating Particle-Laden Flows,” J. Comput. Phys., 238, pp. 1–31. [CrossRef]
Bardow, A. , Karlin, I. V. , and Gusev, A. A. , 2008, “ Multispeed Models in Off-Lattice Boltzmann Simulations,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 77(2 Pt 2), p. 025701. [CrossRef]
Kalarakis, A. , Michalis, V. , Skouras, E. , and Burganos, V. , 2012, “ Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media,” Trans. Porous Media, 94(1), pp. 385–398. [CrossRef]
Harting, J. , Frijters, S. , Ramaioli, M. , Robinson, M. , Wolf, D. E. , and Luding, S. , 2014, “ Recent Advances in the Simulation of Particle-Laden Flows,” Eur. Phys. J. Spec. Top., 223(11), pp. 2253–2267. [CrossRef]
Laurent, F. , Massot, M. , and Villedieu, P. , 2004, “ Eulerian Multi-Fluid Modeling for the Numerical Simulation of Coalescence in Polydisperse Dense Liquid Sprays,” J. Comput. Phys., 194(2), pp. 505–543. [CrossRef]
Fréret, L. , Laurent, F. , de Chaisemartin, S. , Kah, D. , Fox, R. O. , Vedula, P. , Reveillon, J. , Thomine, O. , and Massot, M. , 2009, “ Turbulent Combustion of Polydisperse Evaporating Sprays With Droplet Crossing: Eulerian Modeling of Collisions at Finite Knudsen and Validation,” Center for Turbulence Research, Summer Program 2008.
Fan, R. , Marchisio, D. L. , and Fox, R. O. , 2004, “ Application of the Direct Quadrature Method of Moments to Polydisperse Gas-Solid Fluidized Beds,” Powder Technol., 139(1), pp. 7–20. [CrossRef]
Donde, P. , Koo, H. , and Raman, V. , 2012, “ A Multivariate Quadrature Based Moment Method for LES Based Modeling of Supersonic Combustion,” J. Comput. Phys., 231(17), pp. 5805–5821. [CrossRef]
Desjardins, O. , Fox, R. O. , and Villedieu, P. , 2008, “ A Quadrature-Based Moment Method for Dilute Fluid-Particle Flows,” J. Comput. Phys., 227(4), pp. 2514–2539. [CrossRef]
Bhatnagar, P. L. , Gross, E. P. , and Krook, M. , 1954, “ A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” APS J., 94(3), pp. 511–252.
Mazzei, L. , 2008, “ Eulerian Modelling and Computational Fluid Dynamics Simulation of Mono and Polydisperse Fluidized Suspensions,” Ph.D. thesis, Department of Chemical Engineering, University College London, London, UK.
Wheeler, J. C. , 1974, “ Modified Moments and Gaussian Quadratures,” Rocky Mt. J. Math, 4(2), pp. 287–296. [CrossRef]
Gordon, R. G. , 1968, “ Error Bounds in Equilibrium Statistical Mechanics,” J. Math. Phys., 9(5), pp. 655–663. [CrossRef]
Marchisio, D. L. , Pikturna, J. T. , Fox, R. O. , Vigil, R. D. , and Barresi, A. A. , 2003, “ Quadrature Method of Moments for Population-Balance Equations,” Am. Inst. Chem. Eng., 49(5), pp. 1266–1276. [CrossRef]
John, V. , and Thein, F. , 2012, “ On the Efficiency and Robustness of the Core Routine of the Quadrature Method of Moments (QMOM),” Chem. Eng. Phys., 75, pp. 327–333. [CrossRef]
Mazzei, L. , 2011, “ Limitations of Quadrature-Based Moment Methods for Modeling Inhomogeneous Polydisperse Fluidized Powders,” Chem. Eng. Sci., 66(16), pp. 3628–3640. [CrossRef]
Fox, R. O. , 2009, “ Optimal Moment Sets for Multivariate Direct Quadrature Method of Moments,” Ind. Eng. Chem. Res., 48(21), pp. 9686–9696. [CrossRef]
Vikas, V. , Wang, Z. J. , Passalacqua, A. , and Fox, R. O. , 2011, “ Realizable High-Order Finite-Volume Schemes for Quadrature-Based Moment Methods,” J. Comput. Phys., 230(13), pp. 5328–5352. [CrossRef]
Passalacqua, A. , Fox, R. O. , Garg, R. , and Subramaniam, S. , 2010, “ A Fully Coupled Quadrature-Based Moment Method for Dilute to Moderately Dilute Fluid-Particle Flows,” Chem. Eng. Sci., 65(7), pp. 2267–2283. [CrossRef]
LeVeque, R. J. , 2002, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, New York.
Chalons, C. , Kah, D. , and Massot, M. , 2012, “ Beyond Pressureless Gas Dynamics: Quadrature-Based Velocity Moment Models,” Commun. Math. Sci., 10(4), pp. 1241–1272.
Vié, A. , Chalons, C. , Fox, R. O. , Laurent, F. , and Massot, M. , 2011, “ A Multi-Gaussian Quadrature Method of Moments for Simulating High Stokes Number Turbulent Two-Phase Flows,” Annual Research Briefs 2011.
Laurent, F. , Vie, A. , Chalons, C. , Fox, R. , and Massot, M. , 2012, “ A Hierarchy of Eulerian Models for Trajectory Crossing in Particle-Laden Turbulent Flows Over a Wide Range of Stokes Numbers,” Center for Turbulence Research Annual Research Briefs, pp. 193–204.

Figures

Grahic Jump Location
Fig. 1

Knudsen number regimes and terminology [6,22]

Grahic Jump Location
Fig. 2

Two-point, 1D quadrature representation (abscissas Uα and weights φα) of a sample 1D PDF for x-velocity, v1

Grahic Jump Location
Fig. 3

Limited one-point quadrature (monokinetic) test which fails to realize PTC: (a) M(0), (b) M100(1), and (c) {U,V}

Grahic Jump Location
Fig. 4

Planar contours of mass and x-momentum for two slope limiters on uniform grid: (a) minmod M(0), (b) minmod M100(1), (c) minmod {U,V}, (d) superbee M(0), (e) superbee M100(1), and (f) superbee {U,V}

Grahic Jump Location
Fig. 5

Planar contours of mass and x-momentum for two slope-limiters on nonuniform grid: (a) minmod M(0), (b) minmod M100(1), (c) {U,V}, (d) superbee M(0), (e) superbee M100(1), and (f) {U,V}

Grahic Jump Location
Fig. 6

Centerline of free-jet crossing with minmod limiter: (a) x-moment subset, (b) x abscissas, Uα, and (c) y abscissas, Vα

Grahic Jump Location
Fig. 7

Centerline of free-jet crossing with superbee limiter: (a) x-moment subset, (b) x abscissas, Uα, and (c) y abscissas, Vα

Grahic Jump Location
Fig. 8

Wall-normal profile of one-point quadrature channel flow: (a) volume fraction, M(0) and (b) mean streamwise velocity, 〈v1〉

Grahic Jump Location
Fig. 9

Wall-normal profile of two-point quadrature channel flow: (a) volume fraction and (b) mean streamwise velocity, 〈v1〉

Grahic Jump Location
Fig. 10

Wall-parallel plane at y+≈0 of volume fraction, M(0), in channel flow for St=2.5

Grahic Jump Location
Fig. 11

Six simple moment fields in x and y, and volume fraction for St=2.5 : (a) M100(1), (b) M010(1), (c) M200(2), (d) M020(2), (e) M300(3), (f) M030(3), and (g) M(0)

Grahic Jump Location
Fig. 12

Correlation between fluid velocity and particle volume fraction at y+≈0 for St=2.5 : (a) carrier fluid streamwise velocity, v1 and (b) CQMOM particle volume fraction, M(0)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In