0
Research Papers: Flows in Complex Systems

Gas-Assisted Droplet Impact on a Solid Surface

[+] Author and Article Information
Andres J. Diaz

Escuela de Ingenieria Industrial,
Facultad de Ingenieria,
Universidad Diego Portales,
Av. Ejercito 441, Santiago Centro, Chile
e-mail: andres.diaz@udp.cl

Alfonso Ortega

Mechanical Engineering Department,
College of Engineering,
Villanova University,
800 E. Lancaster Avenue,
Villanova, PA 19085
e-mail: alfonso.ortega@villanova.edu

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received May 28, 2015; final manuscript received February 18, 2016; published online May 19, 2016. Assoc. Editor: Oleg Schilling.

J. Fluids Eng 138(8), 081104 (May 19, 2016) (9 pages) Paper No: FE-15-1362; doi: 10.1115/1.4033025 History: Received May 28, 2015; Revised February 18, 2016

An experimental, numerical, and theoretical investigation of the behavior of a gas-assisted liquid droplet impacting on a solid surface is presented with the aim of determining the effects of a carrier gas on the droplet deformation dynamics. Experimentally, droplets were generated within a circular air jet for gas Reynolds numbers Reg = 0–2547. High-speed photography was used to capture the droplet deformation process, whereas the numerical analysis was conducted using the volume of fluid (VOF) model. The numerical and theoretical predictions showed that the contribution of a carrier gas to the droplet spreading becomes significant only at high Weo and when the work done by pressure forces is greater than 10% of the kinetic energy. Theoretical predictions of the maximum spreading diameter agree reasonably well with the experimental and numerical observations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, J. , 2007, “ Spray Cooling Heat Transfer: The State of the Art,” Int. J. Heat Fluid Flow, 28(4), pp. 753–767. [CrossRef]
Mao, T. , Kuhn, D. , and Tran, H. , 1997, “ Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces,” AIChE J., 43(9), pp. 2169–2179. [CrossRef]
Seo, J. , Lee, J. S. , Kim, H. Y. , and Yoon, S. S. , 2015, “ Empirical Model for the Maximum Spreading Diameter of Low-Viscosity Droplets on a Dry Wall,” Exp. Therm. Fluid Sci., 61, pp. 121–129. [CrossRef]
Thalakkottor, J. J. , and Mohseni, K. , 2015, “ Effect of Slip on Circulation Inside a Droplet,” ASME J. Fluids Eng., 137(12), p. 121201. [CrossRef]
Dechelette, A. , Sojka, P. , and Wassgren, C. , 2010, “ Non-Newtonian Drops Spreading on a Flat Surface,” ASME J. Fluids Eng., 132(10), p. 101302. [CrossRef]
Pasandideh-Fard, M. , Qiao, Y. M. , Chandra, S. , and Mostaghimi, J. , 1996, “ Capillary Effects During Droplet Impact on a Solid Surface,” Phys. Fluids, 8(3), pp. 650–659. [CrossRef]
Sikalo, S. , Marengo, M. , Tropea, C. , and Ganic, E. N. , 2002, “ Analysis of Impact of Droplets on Horizontal Surfaces,” Exp. Therm. Fluid Sci., 25(7), pp. 503–510. [CrossRef]
Sikalo, S. , Wilhelm, H. D. , Roisman, I. V. , Jakirlic, S. , and Tropea, C. , 2005, “ Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations,” Phys. Fluids, 17(6), p. 062103. [CrossRef]
Marmanis, H. , and Thoroddsen, S. , 1996, “ Scaling of the Fingering Pattern of an Impacting Drop,” Phys. Fluids, 8(6), pp. 1344–1346. [CrossRef]
Thoroddsen, S. , and Sakakibara, J. , 1998, “ Evolution of the Fingering Pattern of an Impacting Drop,” Phys. Fluids, 10(6), pp. 1359–1374. [CrossRef]
Bussmann, M. , Chandra, S. , and Mostaghimi, J. , 2000, “ Modeling the Splash of a Droplet Impacting a Solid Surface,” Phys. Fluids, 12(12), pp. 3121–3132. [CrossRef]
Liu, J. , Vu, H. , Yoon, S. S. , Jepsen, R. A. , and Aguilar, G. , 2010, “ Splashing Phenomena During Liquid Droplet Impact,” Atomization Sprays, 20(4), pp. 297–310. [CrossRef]
Li, H. , Mei, S. , Wang, L. , Gao, Y. , and Liu, J. , 2014, “ Splashing Phenomena of Room Temperature Liquid Metal Droplet Striking on the Pool of the Same Liquid Under Ambient Air Environment,” Int. J. Heat Fluid Flow, 47, pp. 1–8. [CrossRef]
Riboux, G. , and Gordillo, J. M. , 2014, “ Experiments of Drops Impacting a Smooth Solid Surface: A Model of the Critical Impact Speed for Drop Splashing,” Phys. Rev. Lett., 113(2), p. 024507. [CrossRef] [PubMed]
Mehdi-Nejad, V. , Mostaghimi, J. , and Chandra, S. , 2003, “ Air Bubble Entrapment Under an Impacting Droplet,” Phys. Fluids, 15(1), pp. 173–183. [CrossRef]
Tran, T. , Staat, H. J. , Prosperetti, A. , Sun, C. , and Lohse, D. , 2012, “ Drop Impact on Superheated Surfaces,” Phys. Rev. Lett., 108(3), p. 036101. [CrossRef] [PubMed]
Li, R. , Ashgriz, N. , and Chandra, S. , 2010, “ Maximum Spread of Droplet on Solid Surface: Low Reynolds and Weber Numbers,” ASME J. Fluids Eng., 132(6), p. 061302. [CrossRef]
Haller, K. K. , Ventikos, Y. , Poulikakos, D. , and Monkewitz, P. , 2002, “ Computational Study of High-Speed Liquid Droplet Impact,” J. Appl. Phys., 92(5), pp. 2821–2828. [CrossRef]
Kumar, A. , and Gu, S. , 2012, “ Modelling Impingement of Hollow Metal Droplets Onto a Flat Surface,” Int. J. Heat Fluid Flow, 37, pp. 189–195. [CrossRef]
Lewis, S. , Anumolu, L. , and Trujillo, M. , 2013, “ Numerical Simulations of Droplet Train and Free Surface Jet Impingement,” Int. J. Heat Fluid Flow, 44, pp. 610–623. [CrossRef]
Carroll, B. , and Hidrovo, C. , 2013, “ Droplet Detachment Mechanism in a High-Speed Gaseous Microflow,” ASME J. Fluids Eng., 135(7), p. 071206. [CrossRef]
Bussmann, M. , Mostaghimi, J. , and Chandra, S. , 1999, “ On a Three-Dimensional Volume Tracking Model of Droplet Impact,” Phys. Fluids, 11(6), pp. 1406–1417. [CrossRef]
Fujimoto, H. , Shiotani, Y. , Tong, A. Y. , Hama, T. , and Takuda, H. , 2007, “ Three-Dimensional Numerical Analysis of the Deformation Behavior of Droplets Impinging Onto a Solid Substrate,” Int. J. Multiphase Flow, 33(3), pp. 317–332. [CrossRef]
Lunkad, S. F. , Buwa, V. V. , and Nigam, K. , 2007, “ Numerical Simulations of Drop Impact and Spreading on Horizontal and Inclined Surfaces,” Chem. Eng. Sci., 62(24), pp. 7214–7224. [CrossRef]
Pasandideh-Fard, M. , Chandra, S. , and Mostaghimi, J. , 2002, “ A Three-Dimensional Model of Droplet Impact and Solidification,” Int. J. Heat Mass Transfer, 45(11), pp. 2229–2242. [CrossRef]
Bartolo, D. , Josserand, C. , and Bonn, D. , 2005, “ Retraction Dynamics of Aqueous Drops Upon Impact on Non-Wetting Surfaces,” J. Fluid Mech., 545, pp. 329–338. [CrossRef]
Eggers, J. , Fontelos, M. A. , Josserand, C. , and Zaleski, S. , 2010, “ Drop Dynamics After Impact on a Solid Wall: Theory and Simulations,” Phys. Fluids, 22(6), p. 062101. [CrossRef]
Yarin, A. L. , 2006, “ Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing,” Annu. Rev. Fluid Mech., 38(1), pp. 159–192. [CrossRef]
Chandra, S. , and Avedisian, C. T. , 1991, “ On the Collision of a Droplet With a Solid Surface,” Proc. R. Soc. London, Ser. A, 432(1884), pp. 13–41. [CrossRef]
Attané, P. , Girard, F. , and Morin, V. , 2007, “ An Energy Balance Approach of the Dynamics of Drop Impact on a Solid Surface,” Phys. Fluids, 19(1), p. 012101. [CrossRef]
Collings, E. W. , Markworth, A. J. , McCoy, J. K. , and Saunders, J. H. , 1990, “ Splat-Quench Solidification of Freely Falling Liquid-Metal Drops by Impact on a Planar Substrate,” J. Mater. Sci., 25(8), pp. 3677–3682. [CrossRef]
Fukai, J. , Tanaka, M. , and Miyatake, O. , 1998, “ Maximum Spreading of Liquid Droplets Colliding With Flat Surfaces,” J. Chem. Eng. Jpn., 31(3), pp. 456– 461. [CrossRef]
Hocking, L. M. , and Rivers, A. D. , 1982, “ The Spreading of a Drop by Capillary Action,” J. Fluid Mech., 121(1), pp. 425–442. [CrossRef]
Jones, H. , 1971, “ Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization,” J. Phys. D: Appl. Phys., 4(11), pp. 1657–1660. [CrossRef]
Madejski, J. , 1976, “ Solidification of Droplets on a Cold Surface,” Int. J. Heat Mass Transfer, 19(9), pp. 1009–1013. [CrossRef]
Mundo, C. , Sommerfeld, M. , and Tropea, C. , 1995, “ Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process,” Int. J. Multiphase Flow, 21(2), pp. 151–173. [CrossRef]
Roisman, I. V. , Rioboo, R. , and Cameron, T. , 2002, “ Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding,” Proc. R. Soc. London, Ser. A, 458(2022), pp. 1411–1430. [CrossRef]
Scheller, B. L. , and Bousfield, D. W. , 1995, “ Newtonian Drop Impact With a Solid Surface,” AIChE J., 41(6), pp. 1357–1367. [CrossRef]
Clanet, C. , Béguin, C. , Richard, D. , and Quéré, D. , 2004, “ Maximal Deformation of an Impacting Drop,” J. Fluid Mech., 517, pp. 199–208. [CrossRef]
Laan, N. , de Bruin, K. G. , Bartolo, D. , Josserand, C. , and Bonn, D. , 2014, “ Maximum Diameter of Impacting Liquid Droplets,” Phys. Rev. Appl., 2(4), p. 044018. [CrossRef]
Harlow, F. H. , and Shannon, J. P. , 1967, “ The Splash of a Liquid Drop,” J. Appl. Phys., 38(10), pp. 3855–3866. [CrossRef]
Haley, P. J. , and Miksis, M. J. , 1991, “ The Effect of the Contact Line on Droplet Spreading,” J. Fluid Mech., 223, pp. 57–81. [CrossRef]
Attar, E. , and Körner, C. , 2009, “ Lattice Boltzmann Method for Dynamic Wetting Problems,” J. Colloid Interface Sci., pp. 84–93.
Guo, Y. L. , Bennacer, R. , Shen, S. Q. , and Li, W. Z. , 2009, “ Simulation of a Liquid Droplet Impinging on a Horizontal Solid Substrate Using Lattice Boltzmann Moment Model,” Defect and Diffusion Forum, Vol. 283, pp. 303–308.
Gupta, A. , and Kumar, R. , 2008, “ Simulation of Droplet Flows Using Lattice Boltzmann Method,” ASME Paper No. ICNMM2008-62372.
Mukherjee, S. , and Abraham, J. , 2007, “ Investigations of Drop Impact on Dry Walls With a Lattice-Boltzmann Model,” J. Colloid Interface Sci., 312(2), pp. 341–354. [CrossRef] [PubMed]
Seta, T. , and Kono, K. , 2004, “ Thermal Lattice Boltzmann Method for Liquid-Gas Two-Phase Flows in Two Dimension,” JSME Int. J. Ser. B, 47(3), pp. 572–583. [CrossRef]
Kamnis, S. , and Gu, S. , 2005, “ Numerical Modelling of Droplet Impingement,” J. Phys. D: Appl. Phys., 38(19), pp. 3664–3673. [CrossRef]
Gunjal, P. R. , Ranade, V. V. , and Chaudhari, R. V. , 2005, “ Dynamics of Drop Impact on Solid Surface: Experiments and VOF Simulations,” AIChE J., 51(1), pp. 59–78. [CrossRef]
Capizzano, F. , and Iuliano, E. , 2014, “ A Eulerian Method for Water Droplet Impingement by Means of an Immersed Boundary Technique,” ASME J. Fluids Eng., 136(4), p. 040906. [CrossRef]
Fukai, J. , Zhao, Z. , Poulikakos, D. , Megaridis, C. M. , and Miyatake, O. , 1993, “ Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface,” Phys. Fluids A: Fluid Dyn., 5(11), pp. 2588–2599. [CrossRef]
Hatta, N. , Fujimoto, H. , and Takuda, H. , 1995, “ Deformation Process of a Water Droplet Impinging on a Solid Surface,” ASME J. Fluids Eng., 117(3), pp. 394–401. [CrossRef]
Cheng, L. , 1977, “ Dynamic Spreading of Drops Impacting Onto a Solid Surface,” Ind. Eng. Chem. Process Des. Dev., 16(2), pp. 192–197. [CrossRef]
Kim, H.-Y. , and Chun, J.-H. , 2001, “ The Recoiling of Liquid Droplets Upon Collision With Solid Surfaces,” Phys. Fluids, 13(3), pp. 643–659. [CrossRef]
Park, H. , Carr, W. W. , Zhu, J. , and Morris, J. F. , 2003, “ Single Drop Impaction on a Solid Surface,” AIChE J., 49(10), pp. 2461–2471. [CrossRef]
Rioboo, R. , Marengo, M. , and Tropea, C. , 2002, “ Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces,” Exp. Fluids, 33(1), pp. 112–124. [CrossRef]
Yarin, A. , and Weiss, D. , 1995, “ Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity,” J. Fluid Mech., 283, pp. 141–173. [CrossRef]
Zhen-Hai, S. , and Rui-Jing, H. , 2008, “ Simulation Solution for Micro Droplet Impingement on a Flat Dry Surface,” Chin. Phys. B, 17(9), pp. 3185–3188. [CrossRef]
Moffat, R. J. , 1988, “ Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1(1), pp. 3–17. [CrossRef]
REFPROP, N., 2002, “ Standard Reference Database 23,” NIST Thermodynamic Properties of Refrigerant Mixtures Database (REFPROP), Version 9.1.
Hirt, C. W. , and Nichols, B. D. , 1981, “ Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., 39(1), pp. 201–225. [CrossRef]
Brackbill, J. U. , Kothe, D. B. , and Zemach, C. , 1992, “ A Continuum Method for Modeling Surface Tension,” J. Comput. Phys., 100(2), pp. 335–354. [CrossRef]
Fluent, Inc., 2006, “ FLUENT 6.3 User's Guide,” Fluent Documentation.
Ubbink, O. , and Issa, R. I. , 1999, “ A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes,” J. Comput. Phys., 153(1), pp. 26–50.
White, F. M. , and Corfield, I. , 1991, Viscous Fluid Flow, Vol. 2, McGraw-Hill, New York.
Roura, P. , and Fort, J. , 2004, “ Local Thermodynamic Derivation of Young's Equation,” J. Colloid Interface Sci., 272(2), pp. 420–429. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic of the experimental apparatus

Grahic Jump Location
Fig. 2

Computational domain and boundary conditions

Grahic Jump Location
Fig. 3

Droplet schematic: (a) before the impact and (b) at maximum spreading

Grahic Jump Location
Fig. 4

Images of the entire deformation process of a gas-assisted droplet

Grahic Jump Location
Fig. 5

Experimental spreading rate of a gas-assisted droplet as a function of nondimensional time

Grahic Jump Location
Fig. 6

Side-by-side comparison of the experimental and numerical images obtained during the spreading process of a gas-assisted droplet

Grahic Jump Location
Fig. 7

Spreading rate comparison of a gas-assisted droplet as a function of nondimensional time

Grahic Jump Location
Fig. 8

Numerical spreading rate of a gas-assisted droplet as a function of Ω and for (a) Weo = 30, (b) 50, and (c) 100

Grahic Jump Location
Fig. 9

Numerical and theoretical comparison of the gas contribution as a function of both Ω and Weo (symbols correspond to numerical data)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In