0
Research Papers: Flows in Complex Systems

Lattice Boltzmann Method for Simulating Disturbed Hemodynamic Characteristics of Blood Flow in Stenosed Human Carotid Bifurcation

[+] Author and Article Information
Xiuying Kang

Physics Department,
Beijing Normal University,
19 Xinwaidajie,
Beijing 100875, China
e-mail: kangxy@bnu.edu.cn

Wenwen Tang

Physics Department, Beijing Normal University,
19 Xinwaidajie,
Beijing 100875, China
e-mail: 1240372166@qq.com

Siyuan Liu

Physics Department,
Beijing Normal University,
19 Xinwaidajie,
Beijing 100875, China
e-mail: 1522061261@qq.com

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received November 18, 2015; final manuscript received June 5, 2016; published online August 11, 2016. Assoc. Editor: John Abraham.

J. Fluids Eng 138(12), 121104 (Aug 11, 2016) (8 pages) Paper No: FE-15-1845; doi: 10.1115/1.4033913 History: Received November 18, 2015; Revised June 05, 2016

The local hemodynamic factor plays a vital role in the formation and progression of atherosclerosis. In this study, we simulated pulsatile flow patterns in the three-dimensional stenosed and normal carotid artery bifurcations throughout a cardiac cycle using the multiple-relaxation-time lattice Boltzmann (MRT-LB) method. Additionally, we investigated the time-varied flow rate and its division ratios between the parent and daughter branches, the multidirectionality of the stress field, and the averaged local energy dissipation rate. The results can be used in computational modeling of carotid artery hemodynamics and further investigation of the relationship between hemodynamics and cardiovascular diseases.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mendis, S. , Puska, P. , Norrving, B. , Mendis, S. , Puska, P. , and Norrving, B. , 2011, Global Atlas on Cardiovascular Disease Prevention and Control, World Health Organization in Collaboration With the World Heart Federation and the World Stroke Organization, pp. 3–18.
Naghavi, M. , Wang, H. , Lozano, R. , Davis, A. , Liang, X. , Zhou, M. , Vollset, S. E. , Ozgoren, A. A. , Abdalla, S. , and Abd-Allah, F. , 2015, “ Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013,” Lancet, 385(9963), pp. 117–171. [CrossRef] [PubMed]
Zarins, C. K. , Giddens, D. P. , Bharadvaj, B. K. , Zarins, C. K. , Giddens, D. P. , Bharadvaj, B. K. , Sottiurai, V. S. , Mabon, R. F. , and Glagov, S. , 1983, “ Carotid Bifurcation Atherogenesis: Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress,” Circ. Res., 53(4), pp. 502–514. [CrossRef] [PubMed]
Ku, D. N. , Giddens, D. P. , Zarins, C. K. , and Glagov, S. , 1985, “ Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low Oscillating Shear Stress,” Arteriosclerosis, 5(3), pp. 293–302. [CrossRef] [PubMed]
Tang, D. , Yang, C. , Mondal, S. , Liu, F. , Canton, G. , Hatsukami, T. S. , and Yuan, C. , 2008, “ A Negative Correlation Between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models,” J. Biomech., 41(4), pp. 727–736. [CrossRef] [PubMed]
Markl, M. , Wegent, F. , Zech, T. , Bauer, S. , Strecker, C. , Schumacher, M. , Weiller, C. , Hennig, J. , and Harloff, A. , 2010, “ In Vivo Wall Shear Stress Distribution in the Carotid Artery: Effect of Bifurcation Geometry, Internal Carotid Artery Stenosis, and Recanalization Therapy,” Circ. Cardiovasc. Imaging, 3(6), pp. 647–655. [CrossRef] [PubMed]
Pontrelli, G. , König, C. S. , Halliday, I. , Spencer, T. J. , Collins, M. W. , Long, Q. , and Succi, S. , 2011, “ Modelling Wall Shear Stress in Small Arteries Using the Lattice Boltzmann Method: Influence of the Endothelial Wall Profile,” Med. Eng. Phys., 33(7), pp. 832–839. [CrossRef] [PubMed]
Gallo, D. , Steinman, D. A. , Bijari, P. B. , and Morbiducci, U. , 2012, “ Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear,” J. Biomech., 45(14), pp. 2398–2404. [CrossRef] [PubMed]
Steinman, D. A. , Thomas, J. B. , Ladak, H. M. , Milner, J. S. , Rutt, B. K. , and Spence, J. D. , 2002, “ Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI,” Magn. Reson. Med., 47(1), pp. 149–159. [CrossRef] [PubMed]
Gijsen, F. J. H. , Wentzel, J. J. , Thury, A. , Lamers, B. , Schuurbiers, J. C. H. , Serruys, P. W. , and van der Steen, A. F. , 2007, “ A New Imaging Technique to Study 3-D Plaque and Shear Stress Distribution in Human Coronary Artery Bifurcations In Vivo,” J. Biomech., 40(11), pp. 2349–2357. [CrossRef] [PubMed]
Peiffer, V. , Bharath, A. A. , Sherwin, S. J. , and Weinberg, P. D. , 2013, “ A Novel Method for Quantifying Spatial Correlations Between Patterns of Atherosclerosis and Hemodynamic Factors,” ASME J. Biomech. Eng., 135(2), pp. 124–130. [CrossRef]
Mohamied, Y. , Rowland, E. M. , Bailey, E. L. , Sherwin, S. J. , Schwartz, M. A. , and Weinberg, P. D. , 2015, “ Change of Direction in the Biomechanics of Atherosclerosis,” Ann. Biomed. Eng., 43(1), pp. 16–25. [CrossRef] [PubMed]
Chien, S. , 2008, “ Effects of Disturbed Flow on Endothelial Cells,” Ann. Biomed. Eng., 36(4), pp. 554–562. [CrossRef] [PubMed]
Gimbrone, M. A., Jr. , Topper, J. N. , Nagel, T. , Anderson, K. R. , and Garcia-Cardeña, G. , 2000, “ Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesis,” Ann. N. Y. Acad. Sci., 902(1), pp. 230–240. [CrossRef] [PubMed]
Kang, X. , 2014, “ Assessment of the Pulsatile Wall Shear Stress in the Stenosed and Recanalized Carotid Bifurcations by the Lattice Boltzmann Method,” Comput. Fluids, 97(6), pp. 156–163. [CrossRef]
Kang, X. , 2015, “ Lattice Boltzmann Method Simulating Hemodynamics in the Three-Dimensional Stenosed and Recanalized Humancarotid Bifurcations,” Sci. China-Phys., Mech. Astron., 58(1), pp. 1–8. [CrossRef]
Grigioni, M. , D'Avenio, G. V. , and Daniele, C. , 1999, “ A Discussion on the Threshold Limit for Hemolysis Related to Reynolds Shear Stress,” J. Biomech., 32(10), pp. 1107–1112. [CrossRef] [PubMed]
Antiga, L. , and Steinman, D. A. , 2009, “ Rethinking Turbulence in Blood,” Biorheology, 46(2), pp. 77–81. [PubMed]
D'Humi`eres, D. , 1992, “ Rarefied Gas Dynamics: Theory and Simulations,” Prog. Astronaut. Aeronaut., 159, pp. 450–458.
D'Humières, D. , Ginzburg, I. , Krafczyk, M. , Lallemand, P. , and Luo, L. , 2002, “ Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions,” Philos. Trans. R. Soc. A, 360(1792), pp. 437–451. [CrossRef]
Lin, Z. , Baochang, S. , and Zhaoli, G. , 2008, “ Multiple-Relaxation-Time Model for the Correct Thermo-Hydrodynamic Equations,” Phys. Rev. E, 78, pp. 1815–1824.
Chen, F. , Xu, A. , Zhang, G. , Li, Y. , and Succi, S. , 2010, “ Multiple-Relaxation-Time Lattice Boltzmann Approach to Compressible Flows With Flexible Specific-Heat Ratio and Prandtl Number,” Europhys. Lett., 90(5), pp. 1632–1652. [CrossRef]
Chai, Z. , and Zhao, T. S. , 2012, “ Effect of the Forcing Term in the Multiple-Relaxation-Time Lattice Boltzmann Equation on the Shear Stress or the Strain Rate Tensor,” Phys. Rev. E, 86, pp. 1411–1432. [CrossRef]
Stahl, B. , Chopard, B. , and Latt, J. , 2010, “ Measurements of Wall Shear Stress With the Lattice Boltzmann Method and Staircase Approximation of Boundaries,” Comput. Fluids, 39(9), pp. 1625–1633. [CrossRef]
Holdsworth, D. W. , Norley, C. J. , Frayne, R. , Steinman, D. A. , and Rutt, B. K. , 1999, “ Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects,” Physiol. Meas., 20(3), pp. 219–240. [CrossRef] [PubMed]
Zou, Q. , and He, X. , 1997, “ On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids, 9(6), pp. 1591–1598. [CrossRef]
Kang, X. , Ji, Y. , Liu, D. , and Jin, Y. , 2008, “ Three-Dimensional Lattice Boltzmann Method Simulating Blood Flow in Aortic Arch,” Chin. Phys. B, 3(3), pp. 1041–1049.
Li, Y. J. , Haga, J. H. , and Chien, S. , 2005, “ Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells,” J. Biomech., 38(10), pp. 1949–1971. [CrossRef] [PubMed]
Marshall, I. , Papathanasopoulou, P. , and Wartolowska, K. , 2004, “ Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers,” Physiol. Meas., 25(3), pp. 691–697. [CrossRef] [PubMed]
Malek, A. M. , Alper, S. L. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” J. Am. Med. Assoc., 282(21), pp. 2035–2042. [CrossRef]
Morbiducci, U. , Gallo, D. , Massai, D. , Consolo, F. , Ponzini, R. , Antiga, L. , Bignardi, C. , Deriu, M. A. , and Redaelli, A. , 2010, “ Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow,” ASME J. Biomech. Eng., 132(9), pp. 269–286. [CrossRef]
Lee, S. W. , Antiga, L. , and Steinman, D. A. , 2009, “ Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation,” ASME J. Biomech. Eng., 131(6), pp. 309–321. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Periodic inlet velocity profile based on the reported experimental data [25]. The three highlighted phases are systolic peak (t1), systolic maximum deceleration phase (t2), and diastolic flow phase (t3).

Grahic Jump Location
Fig. 2

Distributions of WSS at systolic peak, systolic maximum deceleration phase, and diastolic flow phase for the recanalized ((a)–(c)) and stenosed ((d)–(f)) bifurcations

Grahic Jump Location
Fig. 3

Distributions of axial velocity on the four slices at systolic peak, systolic maximum deceleration phase, and diastolic flow phase for the recanalized ((a)–(c)) and stenosed ((d)–(f)) bifurcations

Grahic Jump Location
Fig. 4

Distributions of axial vorticity on the four slices at systolic peak, systolic maximum deceleration phase, and diastolic flow phase for the recanalized ((a)–(c)) and stenosed ((d)–(f)) bifurcations

Grahic Jump Location
Fig. 5

Volumetric flow rate profiles in the common, internal, and external carotids for the recanalized and stenosed bifurcations during a cardiac cycle

Grahic Jump Location
Fig. 6

Time-varied flow division ratios in the internal and external carotid arteries for the recanalized and stenosed carotid arteries

Grahic Jump Location
Fig. 7

Time-varied volumetric outflow/inflow rate ratios for the recanalized and stenosed carotid arteries

Grahic Jump Location
Fig. 8

Distributions of AWSS (a), AOSI (b), TWSS (c), and TOSI (d) on the wall of the recanalized (left) and stenosed (right) carotid bifurcations, respectively

Grahic Jump Location
Fig. 9

Distributions of time-averaged rate of energy dissipation per unit mass in the recanalized (a) and stenosed (b) carotid bifurcations

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In