Galpin,
P.
,
Van Doormaal,
J.
, and
Raithby,
G.
, 1985, “
Solution of the Incompressible Mass and Momentum Equations by Application of a Coupled Equation Line Solver,” Int. J. Numer. Methods Fluids,
5(7), pp. 615–625.

[CrossRef]
Patankar,
S. V.
, and
Spalding,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” Int. J. Heat Mass Transfer,
15(10), pp. 1787–1806.

[CrossRef]
Caretto,
L.
,
Curr,
R.
, and
Spalding,
D.
, 1972, “
Two Numerical Methods for Three-Dimensional Boundary Layers,” Comput. Methods Appl. Mech. Eng.,
1(1), pp. 39–57.

[CrossRef]
Harlow,
F. H.
, and
Amsden,
A. A.
, 1971, “
A Numerical Fluid Dynamics Calculation Method for All Flow Speeds,” J. Comput. Phys.,
8(2), pp. 197–213.

[CrossRef]
Harlow,
F. H.
, and
Amsden,
A. A.
, 1968, “
Numerical Calculation of Almost Incompressible Flow,” J. Comput. Phys.,
3(1), pp. 80–93.

[CrossRef]
Harlow,
F. H.
, and
Welch,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface,” Phys. Fluids,
8(12), p. 2182.

[CrossRef]
Ghia,
K.
,
Hankey,
W., Jr.
, and
Hodge,
J.
, 1979, “
Use of Primitive Variables in the Solution of Incompressible Navier-Stokes Equations,” AIAA J.
17(3), pp. 298–301.

Alves,
L. S.
d.
B.
, 2009, “
Review of Numerical Methods for the Compressible Flow Equations at Low Mach Numbers,” XII Encontro de Modelagem Computacional, Rio de Janeiro, Brazil, p. 11.

Bijl,
H.
, and
Wesseling,
P.
, 1998, “
A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates,” J. Comput. Phys.,
141(2), pp. 153–173.

[CrossRef]
van der Heul,
D. R.
,
Vuik,
C.
, and
Wesseling,
P.
, 2003, “
A Conservative Pressure-Correction Method for Flow at All Speeds,” Comput. Fluids,
32(8), pp. 1113–1132.

[CrossRef]ANSYS, 2009, “ANSYS Fluent 12.0 User's Guide,” ANSYS, Inc., San Jose, CA.

OpenFOAM 2011, “OpenFOAM User Guide,” OpenFOAM Foundation, London.

Anderson,
J. D.
and
Wendt,
J.
, 1995, Computational Fluid Dynamics, Vol.
206,
McGraw-Hill, New York.

Morton,
K.
, 1971, “
Stability and Convergence in Fluid Flow Problems,” Proc. R. Soc. London, Ser. A,
323(1553), pp. 237–253.

[CrossRef]
Chan,
T. F.
, 1984, “
Stability Analysis of Finite Difference Schemes for the Advection-Diffusion Equation,” SIAM J. Numer. Anal.,
21(2), pp. 272–284.

[CrossRef]
Hindmarsh,
A.
,
Gresho,
P.
, and
Griffiths,
D.
, 1984, “
The Stability of Explicit Euler Time-Integration for Certain Finite Difference Approximations of the Multi-Dimensional Advection–Diffusion Equation,” Int. J. Numer. Methods Fluids,
4(9), pp. 853–897.

[CrossRef]
Wesseling,
P.
, 1996, “
von Neumann Stability Conditions for the Convection-Diffusion Equation,” IMA J. Numer. Anal.,
16(4), pp. 583–598.

[CrossRef]
Shishkina,
O. V.
, 2007, “
The Neumann Stability of High-Order Symmetric Schemes for Convection-Diffusion Problems,” Sib. Math. J.,
48(6), pp. 1141–1146.

[CrossRef]
van der Heul,
D. R.
,
Vuik,
C.
, and
Wesseling,
P.
, 2001, “
Stability Analysis of Segregated Solution Methods for Compressible Flow,” Appl. Numer. Math.,
38(3), pp. 257–274.

[CrossRef]
Nerinckx,
K.
,
Vierendeels,
J.
, and
Dick,
E.
, 2007, “
A Mach-Uniform Algorithm: Coupled Versus Segregated Approach,” J. Comput. Phys.,
224(1), pp. 314–331.

[CrossRef]
Chorin,
A. J.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. Comput. Phys.,
2(1), pp. 12–26.

[CrossRef]
Pulliam,
T. H.
, 1986, “
Artificial Dissipation Models for the Euler Equations,” AIAA J.,
24(12), pp. 1931–1940.

[CrossRef]
Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
CRC Press/Hemisphere Publishing, Washington, DC, p. 210.

Ferziger,
J. H.
, and
Perić,
M.
, 1996, Computational Methods for Fluid Dynamics, Vol.
3,
Springer,
Berlin, Germany.

von Neumann,
J.
, and
Richtmyer,
R. D.
, 2004, “
A Method for the Numerical Calculation of Hydrodynamic Shocks,” J. Appl. Phys.,
21(3), pp. 232–237.

[CrossRef]
Rigal,
A.
, 1979, “
Stability Analysis of Explicit Finite Difference Schemes for the Navier–Stokes Equations,” Int. J. Numer. Methods Eng.,
14(4), pp. 617–620.

[CrossRef]
Fromm,
J. E.
, 1963, “
A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows,” Los Alamos Scientific Lab, Albuquerque, NM, DTIC Document No. LA-2910.

Wesseling,
P.
, 2009, Principles of Computational Fluid Dynamics, Vol.
29,
Springer Science & Business, Berlin/Heidelberg, Germany.

Sousa,
E. L.
, 2003, “
The Controversial Stability Analysis,” Appl. Math. Comput.,
145(2), pp. 777–794.

Vichnevetsky,
R.
, and
Bowles,
J. B.
, 1982, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, Vol.
5,
SIAM, Philadelphia, PA.

Anderson,
D. A.
,
Tannehill,
J. C.
, and
Pletcher,
R. H.
, 1984, Computational Fluid Dynamics and Heat Transfer,
McGraw-Hill Book Company, New York.

Strikwerda,
J. C.
, 2004, Finite Difference Schemes and Partial Differential Equations,
SIAM, Philadelphia, PA.

Lomax,
H.
,
Pulliam,
T. H.
, and
Zingg,
D. W.
, 2013, Fundamentals of Computational Fluid Dynamics,
Springer Science & Business Media,
Berlin/Heidelberg, Germany.

Tucker,
A. B.
, 2004, Computer Science Handbook,
CRC Press, Boca Raton, FL.

Sousa,
E.
, 2009, “
On the Edge of Stability Analysis,” Appl. Numer. Math.,
59(6), pp. 1322–1336.

[CrossRef]
Richtmyer,
R. D.
, and
Morton,
K.
, 1967, Different Methods for Initial Value Problems, (
Interscience Tracts in Pure and Applied Mathematics, 2nd ed.), Interscience, New York.

Sengupta,
T. K.
,
Ganeriwal,
G.
, and
De,
S.
, 2003, “
Analysis of Central and Upwind Compact Schemes,” J. Comput. Phys.,
192(2), pp. 677–694.

[CrossRef]
Courant,
R.
, 1928, “
Uber die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann.,
100(1), pp. 32–74.

[CrossRef]
Ghia,
U.
,
Bayyuk,
S.
,
Habchi,
S.
,
Roy,
C.
,
Shih,
T.
,
Conlisk,
T.
,
Hirsch,
C.
, and
Powers,
J. M.
, 2010, “
The AIAA Code Verification Project-Test Cases for CFD Code Verification,” AIAA Paper No. 2010-125.

Sod,
G. A.
, 1978, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys.,
27(1), pp. 1–31.

[CrossRef]
Schulz-Rinne,
C. W.
,
Collins,
J. P.
, and
Glaz,
H. M.
, 1993, “
Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics,” SIAM J. Sci. Comput.,
14(6), pp. 1394–1414.

[CrossRef]
Kurganov,
A.
, and
Tadmor,
E.
, 2002, “
Solution of Two-Dimensional Riemann Problems for Gas Dynamics Without Riemann Problem Solvers,” Numer. Methods Partial Differ. Equations,
18(5), pp. 584–608.

[CrossRef]
Lax,
P. D.
, and
Liu,
X.-D.
, 1998, “
Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes,” SIAM J. Sci. Comput.,
19(2), pp. 319–340.

[CrossRef]
Schulz-Rinne,
C. W.
, 1993, “
Classification of the Riemann Problem for Two-Dimensional Gas Dynamics,” SIAM J. Math. Anal.,
24(1), pp. 76–88.

[CrossRef]