Fialová,
S.
, 2016, “
Identification of the Properties of Hydrophobic Layers and its Usage in Technical Practice,” Habilitation, VUTIUM, Brno University of Technology, Brno, the Czech Republic.
Fialová,
S.
, and
Pochylý,
F.
, 2014, “
Identification and Experimental Verification of the Adhesive Coefficient of Hydrophobic Materials,” Wasserwirtsch.,
105(1), pp. 125–129.
Haslinger,
J.
,
Hlaváček,
I.
, and
Nečas,
J.
, 1996, “
Numerical Methods for Unilateral Problems in Solid Mechanics,” Handbook of Numerical Analysis, Vol. IV,
North Holland,
Amsterdam, Part 2, pp. 313–485.
Anitescu,
M.
, and
Potra,
F. A.
, 1997, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn.,
14(3), pp. 231–247.
[CrossRef]
Kučera,
R.
,
Haslinger,
J.
,
Šátek,
V.
, and
Jarošová,
M.
, 2016, “
Efficient Methods for Solving the Stokes Problem With Slip Boundary Conditions,” Math. Comput. Simul. (in press).
Kučera,
R.
,
Machalová,
J.
,
Netuka,
H.
, and
Ženčák,
P.
, 2013, “
An Interior Point Algorithm for the Minimization Arising From 3D Contact Problems With Friction,” Optim. Method Software,
28(6), pp. 1195–1217.
[CrossRef]
Hammad,
K. J.
, 2015, “
The Flow Behavior of a Biofluid in a Separated and Reattached Flow Region,” ASME J. Fluids Eng.,
137(6), p. 061104.
[CrossRef]
Corredor,
F. E. R.
,
Bizhani,
M.
, and
Kuru,
E.
, 2015, “
Experimental Investigation of Drag Reducing Fluid Flow in Annular Geometry Using Particle Image Velocimetry Technique,” ASME J. Fluids Eng.,
137(8), p. 081103.
[CrossRef]
Ozogul,
H.
,
Jay,
P.
, and
Magnin,
A.
, 2015, “
Slipping of the Viscoplastic Fluid Flowing on a Circular Cylinder,” ASME J. Fluids Eng.,
137(7), p. 071201.
Brdička,
M.
,
Samek,
L.
, and
Bruno,
S.
, 2011, Mechanika kontinua,
Academia, Prague,
Czech Republic.
Elman,
H. C.
,
Silvester,
D. J.
, and
Wathen,
A. J.
, 2005, Finite Elements and Fast Iterative Solvers With Applications in Incompressible Fluid Dynamics,
Oxford University Press,
Oxford, UK.
Nečas,
J.
, 1967, Les Méthodes Directes en Théorie des Equations Elliptiques,
Masson,
Paris, France.
Fujita,
H.
, 1994, “
A Mathematical Analysis of Motions of Viscous Incompressible Fluid Under Leak and Slip Boundary Conditions,” RIMS Kokyuroku,
888, pp. 199–216.
Bulíček,
M.
, and
Málek,
J.
, 2016, “
On Unsteady Internal Flows of Bingham Fluids Subject to Threshold Slip on the Impermeable Boundary,” Recent Developments of Mathematical Fluid Mechanics,
H. Amann
,
Y. Giga
,
H. Kozono
,
H. Okamoto
, and
M. Yamazaki
, eds.,
Springer,
Heidelberg, Germany, pp. 135–156.
Ayadi,
M.
,
Baffico,
L.
,
Gdoura,
M. K.
, and
Sassi,
T.
, 2014, “
Error Estimates for Stokes Problem With Tresca Friction Conditions,” ESAIM: Math. Modell. Numer. Anal.,
48(5), pp. 1413–1429.
[CrossRef]
Jarošová,
M.
,
Kučera,
R.
, and
Šátek,
V.
, 2015. “
A New Variant of the Path-Following Algorithm for the Parallel Solving of the Stokes Problem With Friction,” Fourth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, P. Iványi and B. H. V. Topping, eds.,
Civil-Comp Press, Stirlingshire, Scotland, UK, Paper No. 11.
Nocedal,
J.
,
Wächter,
A.
, and
Waltz,
R. A.
, 2005, “
Adaptive Barrier Strategies for Nonlinear Interior Methods,” Report No. TR RC 23563, IBM T.J. Watson Research Center, Yorktown Heights, NY.
Pochylý,
F.
,
Fialová,
S.
, and
Kozubková,
M.
, 2011, “
Journal Bearings With Hydrophobic Surface,” Vibronadežnos i Germetičnos Centrobežnyh Mašin, Technical Study—Monography, pp. 314–320.
Pochylý,
F.
,
Fialová,
S.
, and
Malenovský,
E.
, 2012, “
Bearing With Magnetic Fluid and Hydrophobic Surface of the Lining,” IOP Conf. Ser.: Earth Environ. Sci.,
15(2), pp. 1–9.
Hron,
J.
,
Roux,
C. L.
,
Málek,
J.
, and
Rajagopal,
K.
, 2015, “
Flows of Incompressible Fluids Subject to Navier’s Slip on the Boundary,” Comput. Math. Appl.,
56(8), pp. 2128–2143.
[CrossRef]
Koko,
J.
, 2015, “
A
matlab Mesh Generator for the Two-Dimensional Finite Element Method,” Appl. Math. Comput.,
250, pp. 650–664.
[CrossRef]