Research Papers: Multiphase Flows

Experimental Study and Computational Fluid Dynamics Modeling of Pulp Suspensions Flow in a Pipe

[+] Author and Article Information
Carla Cotas

Chemical Engineering and Forest Products
Research Centre (CIEPQPF),
University of Coimbra,
Coimbra 3030-790, Portugal
e-mail: carlacotas@gmail.com

Bruno Branco

Electrical and Computers Engineering
University of Coimbra,
Coimbra 3030-290, Portugal
e-mail: bmbranco@gmail.com

Dariusz Asendrych

Institute of Thermal Machinery,
Częstochowa University of Technology,
Częstochowa 42-200, Poland
e-mail: darek@imc.pcz.pl

Fernando Garcia

Chemical Engineering and Forest Products
Research Centre (CIEPQPF),
University of Coimbra,
Coimbra 3030-790, Portugal
e-mail: fgarcia@eq.uc.pt

Pedro Faia

Electrical and Computers Engineering
University of Coimbra,
Coimbra 3030-290, Portugal
e-mail: faia@deec.uc.pt

Maria Graça Rasteiro

Chemical Engineering and Forest Products
Research Centre (CIEPQPF),
University of Coimbra,
Coimbra 3030-790, Portugal
e-mail: mgr@eq.uc.pt

1Present address: Chemical Engineering and Forest Products Research Centre (CIEPQPF), Chemical Engineering Department, University of Coimbra, Rua Sílvio Lima, Pólo II, Coimbra 3030-790, Portugal.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received July 25, 2016; final manuscript received February 14, 2017; published online April 24, 2017. Assoc. Editor: Francine Battaglia.

J. Fluids Eng 139(7), 071303 (Apr 24, 2017) (14 pages) Paper No: FE-16-1476; doi: 10.1115/1.4036165 History: Received July 25, 2016; Revised February 14, 2017

Eucalyptus and Pine suspensions flow in a pipe was studied experimentally and numerically. Pressure drop was measured for different mean inlet flow velocities. Electrical impedance tomography (EIT), was used to evaluate the prevailing flow regime. Fibers concentration distribution in the pipe cross section and plug evolution were inferred from EIT tomographic images. A modified low-Reynolds-number k–ε turbulence model was applied to simulate the flow of pulp suspensions. The accuracy of the computational fluid dynamics (CFD) predictions was significantly reduced when data in plug regime was simulated. The CFD model applied was initially developed to simulate the flow of Eucalyptus and Pine suspensions in fully turbulent flow regime. Using this model to simulate data in the plug regime leads to an excessive attenuation of turbulence which leads to lower values of pressure drop than the experimental ones. For transition flow regime, the CFD model could be applied successfully to simulate the flow data, similar to what happens for the turbulent regime.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Duffy, G. G. , 2006, “ Measurements, Mechanisms, and Models: Some Important Insights Into the Mechanisms of Flow of Fiber Suspensions,” Annu. Trans. Nord. Rheol. Soc., 14, pp. 19–32.
Kerekes, R. J. , 2006, “ Rheology of Fibre Suspensions in Papermaking: An Overview of Recent Research,” Nord. Pulp Pap. Res. J., 21(5), pp. 598–612. [CrossRef]
Bousfiled, D. W. , 2008, “ Rheological Issues in the Paper Industry,” Rheol. Rev., 6, pp. 47–70.
Derakhshandeh, B. , Kerekes, R. J. , Hatzikiriakos, S. G. , and Bennington, C. P. J. , 2011, “ Rheology of Pulp Fiber Suspensions: A Critical Review,” Chem. Eng. Sci., 66(15), pp. 3460–3470. [CrossRef]
Cui, H. , and Grace, J. R. , 2007, “ Flow of Pulp Fibre Suspension and Slurries: A Review,” Int. J. Multiphase Flow, 33(9), pp. 921–934. [CrossRef]
Gullichsen, J. , and Harkonen, E. , 1981, “ Medium Consistency Technology—I: Fundamental Data,” TAPPI J., 64(6), pp. 69–72.
Ventura, C. , Garcia, F. , Ferreira, P. , and Rasteiro, M. , 2008, “ Flow Dynamics of Pulp Fiber Suspensions,” TAPPI J., 7(8), pp. 20–26.
Lundell, F. , Söderberg, L. D. , and Alfredsson, P. H. , 2011, “ Fluid Mechanics of Papermaking,” Annu. Rev Fluid Mech., 43(1), pp. 195–217. [CrossRef]
Heikkinen, L. , Kourunen, J. , Paananen, P. , Peltonen, K. , Käyhkö, J. , and Vauhkonen, M. , 2010, “ Electrical Resistance Tomography Technique in Pulp and Paper Industry,” ERCOFTAC Bull., 84, pp. 9–11.
Faia, P. M. , Rasteiro, M. G. , Garcia, F. , Silva, R. , Costa, H. , and Branco, B. , 2015, “ Electrical Tomography Use for Imaging Pulp Suspensions Flow in Pipes: Restraints and Evolution,” COST Action FP1005 Final Conference, Trondheim, Norway, June 9–11, pp. 57–60.
Fock, H. , Claesson, J. , Rasmuson, A. , and Wikström, T. , 2011, “ Near Wall Effects in the Plug Flow of Pulp Suspensions,” Can. J. Chem. Eng., 89(5), pp. 1207–1216. [CrossRef]
Claesson, J. , Wikström, T. , and Rasmuson, A. , 2012, “ An Experimental Study of the Turbulent Mixing Layer in Concentrated Fiber Suspensions,” Nord. Pulp Pap. Res. J., 27(5), pp. 940–946. [CrossRef]
Melander, O. , and Rasmuson, A. , 2004, “ PIV Measurements of Velocities and Concentrations of Wood Fibres in Pneumatic Transport,” Exp. Fluids, 37(2), pp. 293–300. [CrossRef]
Tozzi, E. J. , Lavenson, D. M. , McCarthy, M. J. , and Powell, R. L. , 2013, “ Effect of Fiber Length, Flow Rate, and Concentration on Velocity Profiles of Cellulosic Fiber Suspensions,” Acta Mech., 224(10), pp. 2301–2310. [CrossRef]
Li, T.-Q. , Seymour, J. D. , Powell, R. L. , McCarthy, M. J. , McCarthy, K. L. , and Ödberg, L. , 1994, “ Visualization of Flow Patterns of Cellulose Fiber Suspensions by NMR Imaging,” AIChE J., 40(8), pp. 1408–1411. [CrossRef]
Wiklund, J. A. , Stading, M. , Pettersson, A. J. , and Rasmuson, A. , 2006, “ A Comparative Study of UVP and LDA Techniques for Pulp Suspensions in Pipe Flow,” AIChE J., 52(2), pp. 484–495. [CrossRef]
Fock, H. , Wiklund, J. , and Rasmuson, A. , 2009, “ Ultrasound Velocity Profile (UVP) Measurements of Pulp Suspension Flow Near the Wall,” J. Pulp Pap. Sci., 35(1), pp. 26–33.
Claesson, J. , Rasmuson, A. , Wiklund, J. , and Wikström, T. , 2013, “ Measurement and Analysis of Flow of Concentrated Fiber Suspensions Through a 2-D Sudden Expansion Using UVP,” AIChE J., 59(3), pp. 1012–1021. [CrossRef]
Kotzé, R. , Wiklund, J. , and Haldenwang, R. , 2016, “ Application of Ultrasound Doppler Technique for In-Line Rheological Characterization and Flow Visualization of Concentrated Suspensions,” Can. J. Chem. Eng., 94(6), pp. 1066–1075. [CrossRef]
Faia, P. M. , Krochak, P. , Costa, H. , Lundell, F. , Silva, R. , Garcia, F. A. P. , and Rasteiro, M. G. , 2016, “ A Comparative Study of Magnetic Resonance Imaging, Electrical Impedance Tomography, and Ultrasonic Doppler Velocimetry for Semi-Dilute Fiber Flow Suspension Characterisation,” Int. J. Comput. Methods Exp. Meas., 4(2), pp. 165–175.
Krochak, P. J. , Olson, J. A. , and Martinez, D. M. , 2009, “ Fiber Suspension Flow in a Tapered Channel: The Effect of Flow/Fiber Coupling,” Int. J. Multiphase Flow, 35(7), pp. 676–688. [CrossRef]
Latz, A. , Strautins, U. , and Niedziela, D. , 2010, “ Comparative Numerical Study of Two Concentrated Fiber Suspension Models,” J. Non-Newtonian Fluid Mech., 165(13–14), pp. 764–781. [CrossRef]
Sattari, M. , Tuomela, J. , Niskanen, H. , and Hämäläinen, J. , 2014, “ Coupled Simulation of the Spherical Angles of Rigid Fibres by Using a Fibre Orientation Probability Distribution Model,” Int. J. Multiphase Flow, 65, pp. 61–67. [CrossRef]
Yamamoto, S. , and Matsuoka, T. , 1993, “ A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field,” J. Chem. Phys., 98(1), pp. 644–650. [CrossRef]
Kondora, G. , and Asendrych, D. , 2013, “ Modelling the Dynamics of Flexible and Rigid Fibers,” Chem. Process Eng., 34(1), pp. 87–100. [CrossRef]
Lindström, S. B. , and Uesaka, T. , 2007, “ Simulation of the Motion of Flexible Fibers in Viscous Fluid Flow,” Phys. Fluids, 19(11), p. 113307. [CrossRef]
Lindström, S. B. , and Uesaka, T. , 2008, “ Simulation of Semidilute Suspensions of Non-Brownian Fibers in Shear Flow,” J. Chem. Phys., 128(2), p. 024901. [CrossRef] [PubMed]
Mäkipere, K. , and Zamankhan, P. , 2007, “ Simulation of Fiber Suspensions—A Multiscale Approach,” ASME J. Fluids Eng., 129(4), pp. 446–456. [CrossRef]
Challabotla, N. R. , Zhao, L. , and Andersson, H. I. , 2016, “ On Fiber Behavior in Turbulent Vertical Channel Flow,” Chem. Eng. Sci., 153, pp. 75–86. [CrossRef]
Steen, M. , 1991, “ Modeling Fiber Flocculation in Turbulent Flow: A Numerical Study,” TAPPI J., 74(9), pp. 175–182.
Huhtanen, J.-P. T. , and Karvinen, R. J. , 2005, “ Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows,” Annu. Trans. Nord. Rheol. Soc., 13, pp. 177–186.
Ventura, C. A. F. , Garcia, F. A. P. , Ferreira, P. J. , and Rasteiro, M. G. , 2011, “ Modeling the Turbulent Flow of Pulp Suspensions,” Ind. Eng. Chem. Res., 50(16), pp. 9735–9742. [CrossRef]
Rawat, A. , Singh, S. N. , and Seshadri, V. , 2016, “ Computational Methodology for Determination of Head Loss in Both Laminar and Turbulent Regimes for the Flow of High Concentration Coal Ash Slurries Through Pipelines,” Part. Sci. Technol., 34(3), pp. 289–300. [CrossRef]
Cotas, C. I. P. , 2015, “ Modelling of Fiber Suspensions Flow in Pipes,” Ph.D. dissertation, University of Coimbra, Coimbra, Portugal.
Zhou, S. , and Halttunen, J. , 2003, “ Consistency Profile Measurement in Pulp Based on Electrical Impedance Tomography,” XVII IMEKO World Congress: Metrology in the 3rd Millennium, Dubrovnik, Croatia, June 22–27, pp. 1157–1160.
Cheng, K.-S. , Isaacson, D. , Newell, J. C. , and Gisser, D. G. , 1989, “ Electrode Models for Electric Current Computed Tomography,” IEEE Trans. Biomed. Eng., 36(9), pp. 918–924. [CrossRef] [PubMed]
Polydorides, N. , and Lionheart, W. R. B. , 2002, “ A Matlab Toolkit for Three-Dimensional Electrical Impedance Tomography: A Contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software Project,” Meas. Sci. Technol., 13(12), pp. 1871–1883. [CrossRef]
Ventura, C. , Blanco, A. , Negro, C. , Ferreira, P. , Garcia, F. , and Rasteiro, M. , 2007, “ Modeling Pulp Fiber Suspension Rheology,” TAPPI J., 6(7), pp. 17–23.
Blanco, A. , Negro, C. , Fuente, E. , and Tijero, J. , 2007, “ Rotor Selection for a Searle-Type Device to Study the Rheology of Paper Pulp Suspensions,” Chem. Eng. Process., 46(1), pp. 37–44. [CrossRef]
Olson, J. A. , 1996, “ The Effect of Fibre Length on Passage Through Narrow Apertures,” Ph.D. dissertation, University of British Columbia, Vancouver, Canada.
Dong, S. , Feng, X. , Salcudean, M. , and Gartshore, I. , 2003, “ Concentration of Pulp Fibers in 3D Turbulent Channel Flow,” Int. J. Multiphase Flow, 29(1), pp. 1–21. [CrossRef]
Chang, K. C. , Hsieh, W. D. , and Chen, C. S. , 1995, “ A Modified Low-Reynolds-Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion,” ASME J. Fluids Eng., 117(3), pp. 417–423. [CrossRef]
Hsieh, W. D. , and Chang, K. C. , 1996, “ Calculation of Wall Heat Transfer in Pipe-Expansion Turbulent Flows,” Int. J. Heat Mass Transfer, 39(18), pp. 3813–3822. [CrossRef]
Cotas, C. , Silva, R. , Garcia, F. , Faia, P. , Asendrych, D. , and Rasteiro, M. G. , 2015, “ Application of Different Low-Reynolds k–ε Turbulence Models to Model the Flow of Concentrated Pulp Suspensions in Pipes,” Procedia Eng., 102, pp. 1326–1335. [CrossRef]
Malin, M. R. , 1997, “ Turbulent Pipe Flow of Power-Law Fluids,” Int. Commun. Heat Mass Transfer, 24(7), pp. 977–988. [CrossRef]
Bartosik, A. , 2010, “ Application of Rheological Models in Prediction of Turbulent Slurry Flow,” Flow Turbul. Combust., 84(2), pp. 277–293. [CrossRef]
Bartosik, A. , 2011, “ Simulation of the Friction Factor in a Yield-Stress Slurry Flow Which Exhibits Turbulence Damping Near the Pipe Wall,” J. Theor. Appl. Mech., 49(2), pp. 283–300.
Bartosik, A. , 2011, “ Mathematical Modeling of Slurry Flow With Medium Solid Particles,” Mathematical Models and Methods in Modern Science, WSEAS Press, Tenerife, Spain.
Cotas, C. , Asendrych, D. , and Rasteiro, M. G. , 2015, “ Numerical Simulation of Turbulent Pulp Flow of Concentrated Suspensions: Influence of the Non-Newtonian Properties of the Pulp,” Part. Sci. Technol., 34(4), pp. 442–452. [CrossRef]
Cruz, D. O. A. , and Pinho, F. T. , 2003, “ Turbulent Pipe Flow Predictions With a Low Reynolds Number k–ε Model for Drag Reducing Fluids,” J. Non-Newtonian Fluid Mech., 114(2–3), pp. 109–148. [CrossRef]
ANSYS, 2010, “ ANSYS FLUENT Documentation, Release 13.0,” Ansys Inc., Canonsburg, PA.
GAMBIT, 2007, “ GAMBIT Documentation, Release 2.4,” Ansys Inc., Lebanon, NH.
Haavisto, S. , Salmela, J. , Jäsberg, A. , Saarinen, T. , Karppinen, A. , and Koponen, A. , 2015, “ Rheological Characterization of Microfibrillated Cellulose Suspension Using Optical Coherence Tomography,” TAPPI J., 14(5), pp. 291–302.
Jäsberg, A. , 2007, “ Flow Behavior of Fiber Suspensions in Straight Pipes: New Experimental Techniques and Multiphase Modeling,” Ph.D. dissertation, Faculty of Mathematics and Science, University of Jyväskylä, Jyväskylä, Finland.
Mandø, M. , Lightstone, M. F. , Rosendahl, L. , Yin, C. , and Sørensen, H. , 2009, “ Turbulence Modulation in Dilute Particle-Laden Flow,” Int. J. Heat Fluid Flow, 30(2), pp. 331–338. [CrossRef]


Grahic Jump Location
Fig. 1

Typical stress–shear rate curve for fiber suspensions (adapted from Gullichsen and Härkönen [6])

Grahic Jump Location
Fig. 2

Head loss curve for pulp fiber suspension flow and illustrations of different pulp flow regimes (adapted from Gullichsen and Härkönen [6] and Lundell et al. [8])

Grahic Jump Location
Fig. 3

Schematic diagram of pilot rig (adapted from Ventura et al. [7])

Grahic Jump Location
Fig. 4

Schematic diagram of EIT system (adapted from Zhou and Halttunen [35])

Grahic Jump Location
Fig. 6

Two-dimensional axisymmetric computational domain

Grahic Jump Location
Fig. 7

Rheograms and viscosity dependence on shear rate for (a) Eucalyptus pulp suspension, c = 1.50% and (b) Pine pulp suspension, c = 0.80%

Grahic Jump Location
Fig. 8

Apparent viscosity and surface best fit, Eq. (1), for (a) Eucalyptus and (b) Pine pulp suspensions

Grahic Jump Location
Fig. 9

Experimental pressure drop profiles. Dashed line corresponds to the pressure drop for water flow.

Grahic Jump Location
Fig. 10

EIT images for Eucalyptus and Pine suspensions where the dark color (lower conductivity) corresponds to the highest and the light color (higher conductivity) to the lowest concentration of fibers

Grahic Jump Location
Fig. 11

Radial profiles of mean velocity for (a) Eucalyptus pulp c = 1.01% and (b) Pine pulp c = 0.80%

Grahic Jump Location
Fig. 12

Dimensionless velocity profiles for (a) Eucalyptus pulp c = 1.01% and (b) Pine pulp c = 0.80%

Grahic Jump Location
Fig. 13

Radial profiles of RMS velocity for (a) Eucalyptus pulp c = 1.01% and (b) Pine pulp c = 0.80%



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In