0
Research Papers: Flows in Complex Systems

Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes

[+] Author and Article Information
Nuno M. C. Martins

CERIS,
Instituto Superior Técnico,
Universidade de Lisboa,
Av. Rovisco Pais 1,
Lisboa 1049-001, Portugal
e-mail: nunomiguelmartins@tecnico.ulisboa.pt

Bruno Brunone

Department of Civil and Environmental
Engineering,
University of Perugia,
Via G. Duranti,
Perugia 93- 06125, Italy
e-mail: bruno.brunone@unipg.it

Silvia Meniconi

Department of Civil and Environmental
Engineering,
University of Perugia,
Via G. Duranti,
Perugia 93-06125, Italy
e-mail: silvia.meniconi@unipg.it

Helena M. Ramos

CERIS,
Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais 1,
Lisboa 1049-001, Portugal
e-mail: helena.ramos@tecnico.ulisboa.pt

Dídia I. C. Covas

CERIS,
Instituto Superior Técnico,
Universidade de Lisboa,
Av. Rovisco Pais 1,
Lisboa 1049-001, Portugal
e-mail: didia.covas@tecnico.ulisboa.pt

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received January 31, 2017; final manuscript received July 17, 2017; published online September 20, 2017. Assoc. Editor: Francine Battaglia.

J. Fluids Eng 140(1), 011102 (Sep 20, 2017) (9 pages) Paper No: FE-17-1064; doi: 10.1115/1.4037504 History: Received January 31, 2017; Revised July 17, 2017

In this paper, the analysis of fast laminar transients in pressurized pipes is developed using a computational fluid dynamics (CFD) model, combined with the Zielke model and laboratory data. The systematic verification of the performance of the CFD model executed in the first part of the paper allows defining the most efficient set of the discretization parameters capable of capturing the main features of the examined transient. In this framework, the crucial role of radial discretization is pointed out. In the second part of the paper, the refined and efficient CFD model is used to examine some aspects of interest for understanding the dynamics of transients. Specifically, the uniformity of the instantaneous pressure distributions along the pipe radius, which validates the results of the most popular quasi-two-dimensional (2D) models, has been revealed. Moreover, it has been shown that the strongest link between the wall shear stress and the axial component of the velocity occurs in the region close to the pipe wall as well as that the time-shift between the wall shear stress and the local instantaneous flow acceleration increases significantly as time elapses.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Holmboe, E. L. , and Rouleau, W. T. , 1967, “ The Effect of Viscous Shear on Transients in Liquid Lines,” ASME J. Basic Eng., 89(1), pp. 174–180. [CrossRef]
Zielke, W. , 1968, “ Frequency-Dependent Friction in Transient Pipe Flow,” ASME J. Basic Eng., 90(1), pp. 109–115. [CrossRef]
Trikha, A. K. , 1975, “ An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow,” ASME J. Fluids Eng., 97(1), pp. 97–105. [CrossRef]
Suzuki, K. , Taketomi, T. , and Sato, S. , 1991, “ Improving Zielke's Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow,” ASME J. Fluids Eng., 113(4), pp. 569–573. [CrossRef]
Schohl, G. A. , 1993, “ Improved Approximate Method for Simulating Frequency-Dependent Friction in Transient Laminar Flow,” ASME J. Fluids Eng., 115(3), pp. 420–424. [CrossRef]
Stavitsky, D. , and Macagno, E. , 1980, “ Approximate Analysis of Unsteady Laminar Flow,” ASCE J. Hydraul. Div., 106(12), pp. 1973–1980. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0009930
Brunone, B. , Ferrante, M. , and Cacciamani, M. , 2004, “ Decay of Pressure and Energy Dissipation in Laminar Transient Flow,” ASME J. Fluids Eng., 126(6), pp. 928–934. [CrossRef]
Ghidaoui, M. S. , Zhao, M. , McInnis, D. A. , and Axworthy, D. H. , 2005, “ A Review of Water Hammer Theory and Practice,” ASME Appl. Mech. Rev., 58(1), pp. 49–76. [CrossRef]
Adamkowski, A. , and Lewandowski, M. , 2006, “ Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation,” ASME J. Fluids Eng., 128(6), pp. 1351–1363. [CrossRef]
Vardy, A. E. , and Brown, J. M. B. , 2003, “ Transient Turbulent Friction in Smooth Pipe Flows,” J. Sound Vib., 259(5), pp. 1011–1036. [CrossRef]
Vardy, A. , and Brown, J. , 2004, “ Efficient Approximation of Unsteady Friction Weighting Functions,” J. Hydraul. Eng., 130(11), pp. 1097–1107. [CrossRef]
Meniconi, S. , Duan, H. F. , Brunone, B. , Ghidaoui, M. S. , Lee, P. J. , and Ferrante, M. , 2014, “ Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling,” J. Hydraul. Eng., 140(7), p. 04014021. [CrossRef]
Brunone, B. , and Morelli, L. , 1999, “ Automatic Control Valve-Induced Transients in Operative Pipe System,” J. Hydraul. Eng., 125(5), pp. 534–542. [CrossRef]
Brunone, B. , and Golia, U. M. , 2008, “ Discussion of ‘Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines’ by J. P. Vitkovsky, A. Bergant, A. R. Simpson, and M. F. Lambert,” J. Hydraul. Eng., 134(2), pp. 282–284. [CrossRef]
Pezzinga, G. , 2009, “ Local Balance Unsteady Friction Model,” J. Hydraul. Eng., 135(1), pp. 45–56. [CrossRef]
Hullender, D. A. , 2016, “ Alternative Approach for Modeling Transients in Smooth Pipe With Low Turbulent Flow,” ASME J. Fluids Eng., 138(12), p. 121202. [CrossRef]
Liou, J. C. P. , 2016, “ Understanding Line Packing in Frictional Water Hammer,” ASME J. Fluids Eng., 138(8), p. 081303. [CrossRef]
Brunone, B. , and Berni, A. , 2010, “ Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement,” J. Hydraul. Eng., 136(10), pp. 716–726. [CrossRef]
Brunone, B. , Karney, B. W. , Mecarelli, M. , and Ferrante, M. , 2000, “ Velocity Profiles and Unsteady Pipe Friction in Transient Flow,” J. Water Resour. Plann. Manage., 126(4), pp. 236–244. [CrossRef]
Nowak, M. , 2002, “ Wall Shear Stress Measurement in a Turbulent Pipe Flow Using Ultrasound Doppler Velocimetry,” Exp. Fluids, 33(2), pp. 249–255. [CrossRef]
Garcia, C. M. , Cantero, M. I. , Nino, Y. , and Garcia, M. H. , 2005, “ Turbulence Measurements With Acoustic Doppler Velocimeters,” J. Hydraul. Eng., 131(12), pp. 1062–1073. [CrossRef]
Mitra, A. K. , and Rouleau, W. T. , 1985, “ Radial and Axial Variations in Transient Pressure Waves Transmitted Through Liquid Transmission Lines,” ASME J. Fluids Eng., 107(1), pp. 105–111. [CrossRef]
Riasi, A. , Nourbakhsh, A. , and Raisee, M. , 2009, “ Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows,” ASME J. Fluids Eng., 131(12), p. 121202. [CrossRef]
Wahba, E. M. , 2006, “ Runge–Kutta Time-Stepping Schemes With TVD Central Differencing for the Water Hammer Equations,” Int. J. Numer. Methods Fluids, 52(5), pp. 571–590. [CrossRef]
Wahba, E. M. , 2008, “ Modelling the Attenuation of Laminar Fluid Transients in Piping Systems,” Appl. Math. Modell., 32(12), pp. 2863–2871. [CrossRef]
Duan, H. F. , Ghidaoui, M. S. , and Tung, Y. K. , 2009, “ An Efficient Quasi-2D Simulation of Waterhammer in Complex Pipe Systems,” ASME J. Fluids Eng., 131(8), p. 081105. [CrossRef]
Bratland, O. , 1986, “ Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flow,” Fifth International Conference on Pressure Surges, Hannover, Germany, Sept. 22–24, pp. 95–101.
Vardy, A. E. , Brown, J. M. B. , and Hwang, K. L. , 1993, “ A Weighting Function Model of Transient Turbulent Pipe Friction,” J. Hydraul. Res., 31(4), pp. 533–548. [CrossRef]
Pezzinga, G. , 1999, “ Quasi-2D Model for Unsteady Flow in Pipe Networks,” J. Hydraul. Eng., 125(7), pp. 676–685. [CrossRef]
Brunone, B. , Golia, U. M. , and Greco, M. , 1995, “ Effects of Two-Dimensionality on Pipe Transients Modeling,” J. Hydraul. Eng., 121(12), pp. 906–912. [CrossRef]
Zhao, M. , and Ghidaoui, M. S. , 2006, “ Investigation of Turbulence Behavior in Pipe Transient Using a Kappa–Epsilon Model,” J. Hydraul. Res., 44(5), pp. 682–692. [CrossRef]
Pezzinga, G. , 2000, “ Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models,” J. Hydraul. Eng., 126(10), pp. 778–785. [CrossRef]
Annus, I. , Koppel, T. , Sarv, L. , and Ainola, L. , 2013, “ Development of Accelerating Pipe Flow Starting From Rest,” ASME J. Fluids Eng., 135(11), p. 111204. [CrossRef]
Koppel, T. , and Ainola, L. , 2005, “ Identification of Transition to Turbulence in a Highly Accelerated Start-Up Pipe Flow,” ASME J. Fluids Eng., 128(4), pp. 680–686. [CrossRef]
Annus, I. , and Koppel, T. , 2011, “ Transition to Turbulence in Accelerating Pipe Flow,” ASME J. Fluids Eng., 133(7), p. 071202. [CrossRef]
Richardson, E. G. , and Tyler, E. , 1929, “ The Transverse Velocity Gradient Near the Mouths of Pipes in Which an Alternating or Continuous Flow of Air Is Established,” Proc. Phys. Soc., 42(1), pp. 1–15. [CrossRef]
Zhou, L. , Liu, D.-Y. , and Ou, C.-Q. , 2014, “ Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket With VOF Model,” Eng. Appl. Comput. Fluid Mech., 5(1), pp. 127–140.
Martins, S. C. , Martins, N. M. C. , Ramos, H. M. , and Almeida, A. B. , 2012, “ Liquid Flow and Entrapped Air Behaviours in an Experimental Set-Up Using CFD Analysis,” 11th International Conference on Pressure Surges—Surge Analysis, Lisbon, Portugal, Oct. 24–26, pp. 505–516.
Martins, N. M. C. , Soares, A. K. , Ramos, H. M. , and Covas, D. I. C. , 2015, “ Entrapped Air Pocket Analysis Using CFD,” 12th International Conference on Pressure Surges, Dublin, Ireland, Nov. 18–20, pp. 229–238. https://www.researchgate.net/publication/299368816_Entrapped_air_pocket_analysis_using_CFD
Martins, N. M. C. , Delgado, J. N. , Ramos, H. M. , and Covas, D. I. C. , 2017, “ Maximum Transient Pressures in a Rapidly Filling Pipeline With Entrapped Air Using a CFD Model,” J. Hydraul. Res., 55(4), pp. 1–14. [CrossRef]
Martins, N. M. C. , Soares, A. K. , Ramos, H. M. , and Covas, D. I. C. , 2016, “ CFD Modeling of Transient Flow in Pressurized Pipes,” Comput. Fluids, 126, pp. 129–140. [CrossRef]
Martins, N. M. C. , Carriço, N. J. G. , Ramos, H. M. , and Covas, D. I. C. , 2014, “ Velocity-Distribution in Pressurized Pipe Flow Using CFD: Accuracy and Mesh Analysis,” Comput. Fluids, 105, pp. 218–230. [CrossRef]
Martins, N. M. C. , Carriço, N. J. G. , Covas, D. I. C. , and Ramos, H. M. , 2014, “ Velocity-Distribution in Pressurized Pipe Flow Using CFD: Mesh Independence Analysis,” Third IAHR Europe Congress, Porto, Portugal, Apr. 14–16, pp. 145–156. https://www.researchgate.net/publication/266259133_Velocity-Distribution_in_Pressurized_Pipe_Flow_using_CFD_Mesh_Independence_Analysis
Nash, J. E. , and Sutcliffe, J. V. , 1970, “ River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles,” J. Hydrol., 10(3), pp. 282–290. [CrossRef]
Ghidaoui, M. S. , and Kolyshkin, A. A. , 2001, “ Stability Analysis of Velocity Profiles in Water-Hammer Flows,” J. Hydraul. Eng., 127(6), pp. 499–512. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Steady-state flow: 1 − NSE index versus the number of nodes of each analyzed mesh (numbers indicate the rank of Table 2)

Grahic Jump Location
Fig. 2

Unsteady-state wall shear stress by the steady-state best-ranked mesh versus the Zielke model at the pipe midsection

Grahic Jump Location
Fig. 3

Unsteady-state wall shear stress sensitivity analysis at the midsection: La analysis (La = 150, 1500, and 3500; Lr = 65)

Grahic Jump Location
Fig. 4

Unsteady-state wall shear stress sensitivity analysis at the midsection: Lr analysis (Lr = 50, 65, and 70; La = 1500)

Grahic Jump Location
Fig. 5

Unsteady-state wall shear stress and mean velocity at the pipe wall (midsection) for the most representative meshes (La = 1500): (a) Lr = 105, (b) Lr = 130, (c) Lr = 260, and (d) Lr = 390

Grahic Jump Location
Fig. 6

CFD results (piezometric head, H) versus laboratory data at the pipe mid- and end-sections

Grahic Jump Location
Fig. 7

CFD results at the pipe midsection (from Fig. 6): (a) pressure trace and (b) pressure distribution in the pipe section at five selected instants of time

Grahic Jump Location
Fig. 8

CFD results (mean velocity, V) at the pipe mid- and end-sections

Grahic Jump Location
Fig. 9

CFD velocity profiles during the transient event at the pipe midsection

Grahic Jump Location
Fig. 10

CFD axial velocity time-histories at different distances from the wall, at the pipe midsection, for yw = 10%R to 50%R

Grahic Jump Location
Fig. 11

CFD axial velocity time-histories at different distances from the wall, at the pipe midsection, for yw = 2%R to 10%R

Grahic Jump Location
Fig. 12

CFD axial velocity time-histories at different distances from the wall, at the pipe midsection, for yw = 0.4%R to 2%R

Grahic Jump Location
Fig. 13

CFD dimensionless local acceleration and wall shear stress at the pipe midsection

Grahic Jump Location
Fig. 14

Occurrence time of dimensionless local acceleration and wall shear stress peaks at the mid-pipe section: (a) cumulative and (b) absolute time-shifts

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In