Amon,
C. H.
,
Murthy,
J.
,
Yao,
S. C.
,
Narumanchi,
S.
,
Wu,
C. F.
, and
Hsieh,
C. C.
, 2001, “
MEMS Enabled Thermal Management of High Heat Flux Devices EDIFICE: Embedded Droplet Impingement for Integrated Cooling of Electronics,” Exp. Therm. Fluid Sci.,
25(5), pp. 231–242.

[CrossRef]
Agrawal,
A.
, 2011, “
A Comprehensive Review on Gas Flow in Microchannels,” Int. J. Micro-Nano Scale Transp.,
2(1), pp. 1–40.

[CrossRef]
Bird,
G. A.
, 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows,
Oxford University Press,
New York.

Piekos,
E. S.
, and
Breuer,
K. S.
, 1996, “
Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method,” ASME J. Fluids Eng.,
118(3), pp. 464–469.

[CrossRef]
Yan,
F.
, and
Farouk,
B.
, 2002, “
Computations of Low Pressure Fluid Flow and Heat Transfer in Ducts Using the Direct Simulation Monte Carlo Method,” ASME J. Heat Transfer,
124(4), pp. 609–616.

[CrossRef]
Le,
M.
,
Hassan,
I.
, and
Esmail,
N.
, 2006, “
DSMC Simulation of Subsonic Flows in Parallel and Series Microchannels,” ASME J. Fluids Eng.,
128(6), pp. 1153–1163.

[CrossRef]
Wang,
M.
, and
Li,
Z.
, 2006, “
Gases Mixing in Microchannels Using the Direct Simulation Monte Carlo Method,” Int. J. Heat Mass Transfer,
49(9–10), pp. 1696–1702.

[CrossRef]
Wang,
Q. W.
,
Zhao,
C. L.
,
Zeng,
M.
, and
Wu,
Y. N.
, 2008, “
Numerical Investigation of Rarefied Diatomic Gas Flow and Heat Transfer in a Microchannel Using DSMC With Uniform Heat Flux Boundary Condition—Part II: Applications,” Numer. Heat Transfer, Part B,
53(2), pp. 174–187.

[CrossRef]
Zhen,
C. E.
,
Hong,
Z. C.
,
Lin,
Y. J.
, and
Hong,
N. T.
, 2007, “
Comparison of 3-D and 2-D DSMC Heat Transfer Calculations of Low-Speed Short Microchannel Flows,” Numer. Heat Transfer, Part A,
52(3), pp. 239–250.

[CrossRef]
Gavasane,
A.
,
Agrawal,
A.
,
Pradeep,
A. M.
, and
Bhandarkar,
U.
, 2017, “
Simulation of a Temperature Drop of the Flow of Rarefied Gases in Microchannels,” Numer. Heat Transfer Part A,
71(10), pp. 1066–1079.

[CrossRef]
Hong,
Z.
,
Zhen,
C.
, and
Yang,
C.
, 2008, “
Fluid Dynamics and Heat Transfer Analysis of Three-Dimensional Microchannel Flows With Microstructures,” Numer. Heat Transfer Part A,
54(3), pp. 293–314.

[CrossRef]
Hsieh,
T.
,
Hong,
C.
, and
Pan,
Y.
, 2010, “
Flow Characteristics of Three-Dimensional Microscale Backward Facing Step Flows,” Numer. Heat Transfer Part A,
57(5), pp. 331–345.

[CrossRef]
Liou,
T.
, and
Lin,
C.
, 2015, “
Three-Dimensional Rarefied Gas Flows in Constricted Microchannels With Different Aspect Ratios: Asymmetry Bifurcations and Secondary Flows,” Microfluid. Nanofluid.,
18(2), pp. 279–292.

[CrossRef]
Gavasane,
A.
,
Agrawal,
A.
,
Pradeep,
A.
, and
Bhandarkar,
U.
, 2015, “
Study of Temperature Drop in Microchannel Using Direct Simulation Monte Carlo Method,” AIP Conf. Proc.,
1628(1), pp. 785–791.

Le,
M.
, and
Hassan,
I.
, 2006, “
Simulation of Heat Transfer in High Speed Microflows,” Appl. Therm. Eng.,
26(16), pp. 2035–2044.

[CrossRef]
Le,
M.
, and
Hassan,
I.
, 2007, “
The Effects of Outlet Boundary Conditions on Simulating Supersonic Microchannel Flows Using DSMC,”Appl. Therm. Eng.,
27(1), pp. 21–30.

[CrossRef]
Titov,
E.
, and
Levin,
D.
, 2007, “
Extension of the DSMC Method to High Pressure Flows,” Int. J. Comput. Fluid Dyn.,
21(9–10), pp. 351–368.

[CrossRef]
Gatsonis,
N. A.
,
Al-Kouz,
W. G.
, and
Chamberlin,
R. E.
, 2010, “
Investigation of Rarefied Supersonic Flows Into Rectangular Nanochannels Using a Three-Dimensional Direct Simulation Monte Carlo Method,” Phys. Fluids,
22(3), p. 032001.

[CrossRef]
Watvisave,
D. S.
,
Bhandarkar,
U. V.
, and
Puranik,
B. P.
, 2011,“
An Investigation of Pressure Boundary Conditions for the Simulation of a Micro-Nozzle Using DSMC Method,” 28th International Symposium on Shock Waves, Manchester, UK, July 17–22, Paper No. 2481.

Liu,
H. F.
, 2005, “
Hypersonic Rarefied Flow Simulation Using 2D Unstructured DSMC With Free Stream Condition,” 24th International Symposium on Rarefied Gas Dynamics, Bari, Italy, July 10–16, pp. 1223–1228.

Lilley,
C. R.
, and
Macrossan,
M. N.
, 2003, “
Methods for Implementing the Stream Boundary Condition in DSMC Computations,” Int. J. Numer. Methods Fluids,
42(12), pp. 1363–1371.

[CrossRef]
Ikegawa,
M.
, and
Kobayashi,
J.
, 1990, “
Development of a Rarefied Gas Flow Simulator Using the Direct Simulation Monte Carlo Method: 2-D Flow Analysis with the Pressure Conditions Given at the Upstream and Downstream Boundaries,” JSME Int. J. Ser. II,
33(3), pp. 463–467.

Wu,
J.
,
Lee,
W.
, and
Wong,
S.
, 2001, “
Pressure Boundary Treatment in Micromechanical Devices Using The Direct Simulation Monte Carlo Method,” JSME Int. J. Ser. B,
44(3), pp. 439–450.

[CrossRef]
Nance,
R.
,
Hash,
D.
, and
Hassan,
H.
, 1997, “
Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices,” 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 6–9, pp. 6–9.

Wang,
M.
, and
Li,
Z.
, 2004, “
Simulation of Gas Flows in Micro Geometries Using the Direct Simulation Monte Carlo Method,” Int. J. Heat Fluid Flow,
25(6), pp. 975–985.

[CrossRef]
Liou,
W. W.
, and
Fang,
Y. C.
, 2000, “
Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions,” Comput. Model. Eng. Sci.,
1(4), pp. 119–128.

White,
C.
,
Borg,
M.
,
Scanlon,
T.
, and
Reese,
J.
, 2012, “
Accounting for Rotational Non-Equilibrium Effects in Subsonic DSMC Boundary Conditions,” J. Phys. Conf. Ser.,
362, p. 012016.

[CrossRef]
Farbar,
E.
, and
Boyd,
I.
, 2014, “
Subsonic Flow Boundary Conditions for the Direct Simulation Monte Carlo Method,” Comput. Fluids,
102, pp. 99–110.

[CrossRef]
Sengil,
N.
, and
Edis,
F. O.
, 2009, “
Highly Efficient Volume Generation Reservoirs in Molecular Simulations of Gas Flows,” J. Comput. Phys.,
228(12), pp. 4303–4308.

[CrossRef]
Ewart,
T.
,
Firpo,
J. L.
,
Graur,
I.
,
Perrier,
P.
, and
Meolans,
J. G.
, 2009, “
DSMC Simulation: Validation and Application to Low Speed Gas Flows in Microchannels,” ASME J. Fluids Eng.,
131(1), p. 014501.

[CrossRef]
Guo,
K. L.
,
Liaw,
G. S.
, and
Chou,
L. C.
, 1996, “
Shock Structure Prediction for Gas Mixtures by a Modified Direct Simulation Monte Carlo Method,” AIAA Paper No. 96-1818.

Watvisave,
D. S.
, 2014, “
A Numerical Investigation of Wall Effects in High Knudsen Number, High Speed, Internal Flows,” Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, India.

Aktas,
O.
,
Aluru,
M.
, and
Ravaioli,
U.
, 2001, “
Application of a Parallel DSMC Technique to Predict Flow Characteristics in Microfluidic Filters,” J. Micro Electro Mech. Syst.,
10(4), pp. 538–549.

[CrossRef]
Darbdi,
M.
,
Akhlaghi,
H.
,
Karchani,
A.
, and
Vakili,
S.
, 2010, “
Various Boundary Condition Implementation to Study Microfilters Using DSMC Simulation,” ASME Paper No. IMECE2010-40379.

Cave,
H. M.
,
Tseng,
K. C.
,
Wu,
J. S.
,
Jermy,
M. C.
,
Huang,
J. C.
, and
Krumdieck,
S. P.
, 2008, “
Implementation of Unsteady Sampling Procedures for the Parallel Direct Simulation Monte Carlo Method,” J. Comput. Phys.,
227(12), pp. 6249–6271.

[CrossRef]
Agrawal,
A.
, and
Prabhu,
S. V.
, 2008, “
Survey on Measurement of Tangential Momentum Accommodation Coefficient,” J. Vacuum Sci. Technol. A,
26(4), pp. 634–645.

[CrossRef]
Hadjiconstantinou,
N. G.
,
Garcia,
A. L.
,
Bazant,
M. Z.
, and
He,
G.
, 2003, “
Statistical Error in Particle Simulations of Hydrodynamic Phenomena,” J. Comput. Phys.,
187(1), pp. 274–297.

[CrossRef]
Whitfield,
D. L.
, and
Janus,
J. M.
, 1984, “Three-Dimensional Unsteady Euler Equation Solutions Using Flux Vector Splitting,” AIAA Paper No. AIAA-84-1552.

Yang,
J.
,
Ye,
J. J.
,
Zheng,
J. Y.
,
Wong,
I.
,
Lam,
C. K.
,
Xu,
P.
,
Chen,
R. X.
, and
Zhu,
Z. H.
, 2010, “
Using Direct Simulation Monte Carlo With Improved Boundary Conditions for Heat and Mass Transfer in Microchannels,” ASME J. Heat Transfer,
132(4), p. 410081.

[CrossRef]
Ebert,
W. A.
, and
Sparrow,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts,” ASME J. Basic Eng.,
87(4), pp. 1018–1024.

[CrossRef]
Jang,
J.
, and
Wereley,
S. T.
, 2004, “
Pressure Distribution of Gaseous Slip Flow in Straight and Uniform Rectangular Microchannels,” Microfluid. Nanofluid.,
1(1), pp. 41–51.

[CrossRef]