Research Papers: Fundamental Issues and Canonical Flows

A Numerical Investigation of the Onset of Flow Separation in Round-Edge Diverging Tees

[+] Author and Article Information
Foo Kok

Department of Aeronautics and Astronautics,
University of Southampton - Malaysia Campus,
Gelang Patah 79200, Malaysia
e-mail: f.kok@soton.ac.uk

Roy Myose

Department of Aerospace Engineering,
Wichita State University,
Wichita, KS 67260-0044
e-mail: roy.myose@wichita.edu

Klaus A. Hoffmann

Department of Aerospace Engineering,
Wichita State University,
Wichita, KS 67260-0044
e-mail: klaus.hoffmann@wichita.edu

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 12, 2016; final manuscript received September 14, 2017; published online October 24, 2017. Assoc. Editor: Samuel Paolucci.

J. Fluids Eng 140(3), 031206 (Oct 24, 2017) (9 pages) Paper No: FE-16-1816; doi: 10.1115/1.4038087 History: Received December 12, 2016; Revised September 14, 2017

The onset condition of flow separation in diverging tee junctions was investigated numerically. Flow separation and recirculation at the proximal region of a bypass graft can contribute to early phase graft failure in aortocoronary bypass (ACB) surgery. Rounding the inlet edge of the branch reduces the likelihood of flow separation and recirculation. The recirculating zone at the upstream end of the branch is fully eliminated when a threshold value of mass flow rate ratio is reached. The corresponding flow characteristics obtained from diverging tees with a diameter ratio ≤0.2 and a radius of curvature ≤ 0.25 for a Reynolds number ≤ 1817 indicate that an increasing flow rate ratio induces an exponential decrease in the recirculation length. An increase in the diameter ratio and Reynolds number increases both the onset condition of the flow separation and the recirculation length at the upstream end of the branch. However, a decrease in the diameter ratio reduces the onset condition of separation more effectively than a decrease in the radius of curvature at the junction.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Chiu, J.-J. , and Chien, S. , 2011, “ Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives,” Physiol Rev., 91(1), pp. 327–387. [CrossRef] [PubMed]
Davies, P. F. , 2009, “ Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology,” Nat. Clin. Pract. Cardiovasc. Med., 6(1), pp. 16–26. [CrossRef] [PubMed]
Warboys, C. M. , de Luca, A. , Amini, N. , Luong, L. , Duckles, H. , Hsiao, S. , White, A. , Biswas, S. , Khamis, R. , Chong, C. K. , Cheung, W. M. , Sherwin, S. J. , Bennett, M. R. , Gil, J. , Mason, J. C. , Haskard, D. O. , and Evans, P. C. , 2014, “ Disturbed Flow Promotes Endothelial Senescence Via a p53-Dependent Pathway,” Arterioscler. Thromb. Vasc. Biol., 34(5), pp. 985–995. [CrossRef] [PubMed]
Frolova, E. G. , Pluskota, E. , Krukovets, I. , Burke, T. , Drumm, C. , Smith, J. D. , Blech, L. , Febbraio, M. , Bornstein, P. , Plow, E. F. , and Stenina, O. I. , 2010, “ Thrombospondin-4 Regulates Vascular Inflammation and Atherogenesis,” Circ. Res., 107(11), pp. 1313–1325. [CrossRef] [PubMed]
Steucke, K. E. , Tracy, P. V. , Hald, E. S. , Hall, J. L. , and Alford, P. W. , 2015, “ Vascular Smooth Muscle Cell Functional Contractility Depends on Extracellular Mechanical Properties,” J. Biomech., 48(12), pp. 3044–3051. [CrossRef] [PubMed]
Lantz, J. , and Karlsson, M. , 2012, “ Large Eddy Simulation of LDL Surface Concentration in a Subject Specific Human Aorta,” J. Biomech., 45(3), pp. 537–542. [CrossRef] [PubMed]
Hunt, B. J. , Poston, L. , Schachter, M. , and Halliday, A. , 2002, An Introduction to Vascular Biology, Cambridge University Press, New York, pp. 55–56. [CrossRef]
Dolan, J. M. , Kolega, J. , and Meng, H. , 2013, “ High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review,” Ann. Biomed Eng., 41(7), pp. 1411–1427. [CrossRef] [PubMed]
Hsiai, T. K. , Cho, S. K. , Wong, P. K. , Ing, M. , Salazar, A. , Sevanian, A. , Navab, M. , Demer, L. L. , and Ho, C. M. , 2003, “ Monocyte Recruitment to Endothelial Cells in Response to Oscillatory Shear Stress,” FASEB J., 17(12), pp. 1648–1657. [CrossRef] [PubMed]
Hwang, J. , Saha, A. , Boo, Y. C. , Sorescu, G. P. , McNally, J. S. , Holland, S. M. , Dikalov, S. , Giddens, D. P. , Griendling, K. K. , Harrison, D. G. , and Jo, H. , 2003, “ Oscillatory Shear Stress Stimulates Endothelial Production of O2—From p47phox-Dependent NAD(P)H Oxidases, Leading to Monocyte Adhesion,” J. Biol. Chem., 278(47), pp. 47291–47298. [CrossRef] [PubMed]
van Thienen, J. V. , Fledderus, J. O. , Dekker, R. J. , Rohlena, J. , van Ijzendoorn, G. A. , Kootstra, N. A. , Pannekoek, H. , and Horrevoets, A. J. , 2006, “ Shear Stress Sustains Atheroprotective Endothelial KLF2 Expression More Potently Than Statins Through mRNA Stabilization,” Cardiovasc. Res., 72(2), pp. 231–240. [CrossRef] [PubMed]
Loufrani, L. , and Henrion, D. , 2008, “ Role of the Cytoskeleton in Flow (Shear Stress)-Induced Dilation and Remodeling in Resistance Arteries,” Med. Biol. Eng. Comput., 46(5), pp. 451–460. [CrossRef] [PubMed]
Jadlowiec, C. , and Dardik, A. , 2013, “ Shear Stress and Endothelial Cell Retention in Critical Lower Limb Ischemia,” Inflammatory Response in Cardiovascular Surgery, E. A. Gabriel , and S. A. Gabriel , eds., Springer, London, pp. 107–116. [CrossRef]
Hess, C. N. , Lopes, R. D. , Gibson, C. M. , Hager, R. , Wojdyla, D. M. , Englum, B. R. , Mack, M. J. , Califf, R. M. , Kouchoukos, N. T. , Peterson, E. D. , and Alexander, J. H. , 2014, “ Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Insights From Prevent IV,” Circulation, 130(17), pp. 1445–1451. [CrossRef] [PubMed]
Thielmann, M. , Massoudy, P. , Jaeger, B. R. , Neuhäuser, M. , Marggraf, G. , Sack, S. , Erbel, R. , and Jakob, H. , 2006, “ Emergency Re-Revascularization With Percutaneous Coronary Intervention, Reoperation, or Conservative Treatment in Patients With Acute Perioperative Graft Failure Following Coronary Artery Bypass Surgery,” Eur. J. Cardiothorac. Surg., 30(1), pp. 117–125. [CrossRef] [PubMed]
Canos, D. A. , Mintz, G. S. , Rock, B. Y. , Escolar, E. , Gevorkian, N. , Pichard, A. D. , Satler, L. F. , Kent, K. M. , and Weissman, N. J. , 2004, “ Early Saphenous Vein Graft Failure: A Predictor of Poor Outcomes After Percutaneous Coronary Intervention,” J. Am. Coll. Cardiol., 43(5), p. A76. [CrossRef]
Qiao, A. , and Liu, Y. , 2006, “ Influence of Graft-Host Diameter Ratio on the Hemodynamics of CABG,” Biomed Mater. Eng., 16(3), pp. 189–201. http://content.iospress.com/articles/bio-medical-materials-and-engineering/bme401 [PubMed]
Sui, Y. , Ma, B. , Chu, B. , and Qiao, A. , 2009, “ Optimization of Anastomotic Configuration in CABG Surgery,” Commun. Numer. Methods Eng., 25(11), pp. 1097–1106. [CrossRef]
Ghista, D. N. , and Kabinejadian, F. , 2013, “ Coronary Artery Bypass Grafting Hemodynamics and Anastomosis Design: A Biomedical Engineering Review,” Biomed. Eng. OnLine, 12(1), p. 129. [CrossRef] [PubMed]
Campeau, L. , Crochet, D. , Lespérance, J. , Bourassa, M. G. , and Grondin, C. M. , 1975, “ Postoperative Changes in Aortocoronary Saphenous Vein Grafts Revisited: Angiographic Studies at Two Weeks and at One Year in Two Series of Consecutive Patients,” Circulation, 52(3), pp. 369–377. [CrossRef] [PubMed]
Rennels, D. C. , and Hudson, H. M. , 2012, Pipe Flow—A Practical and Comprehensive Guide, Wiley-Blackwell, Hoboken, NJ. [CrossRef]
Costa, N. P. , Maia, R. , Proença, M. F. , and Pinho, F. T. , 2006, “ Edge Effects on the Flow Characteristics in a 90 Deg Tee Junction,” ASME J. Fluids Eng., 128(6), p. 1204. [CrossRef]
Hamilton, J. B. , 1929, “ Suppression of Pipe Intake Losses by Various Degrees of Rounding,” University of Washington Engineering Experiment Station, Seattle, WA, Bulletin No. 51.
Bullen, P. R. , Cheeseman, D. J. , and Hussain, L. A. , 1988, “ The Effects of Inlet Sharpness on the Pipe Contraction Pressure Loss Coefficient,” Int. J. Heat Fluid Flow, 9(4), pp. 431–433. [CrossRef]
Tanaka, G. , Yamaguchi, R. , Liu, H. , and Hayase, T. , 2016, “ Fluid Vibration Induced by High-Shear-Rate Flow in a T-Junction,” ASME J. Fluids Eng., 138(8), p. 081103. [CrossRef]
Neofytou, P. , Housiadas, C. , Tsangaris, S. G. , Stubos, A. K. , and Fotiadis, D. I. , 2014, “ Newtonian and Power-Law Fluid Flow in a T-Junction of Rectangular Ducts,” Theor. Comput. Fluid Dyn., 28(2), pp. 233–256. [CrossRef]
Tomor, A. , and Kristóf, G. , 2016, “ Hydraulic Loss of Finite Length Dividing Junctions,” ASME J. Fluids Eng., 139(3), p. 031104. [CrossRef]
Sawada, R. , Kaneko, T. , and Sano, M. , 2015, “ Pressure Loss and Fluid Flow Characteristics of Square Duct Flow With T-Junction,” Trans. JSME, 81(828), p. 15-00100.
Karino, T. , Kwong, H. H. , and Goldsmith, H. L. , 1979, “ Particle Flow Behaviour in Models of Branching Vessels: I. Vortices in 90° T-Junctions,” Biorheology, 16(3), pp. 231–248. [CrossRef] [PubMed]
Vogel, G. , 1928, “ Investigation of the Loss in Right—Angled Pipe Branches,” Hydro Inst. Technol. Hoschule–Munchen, 1, pp. 61–64.
Iwanami, S. , Suu, T. , and Kato, H. , 1969, “ Study on Flow Characteristics in Right-Angled Pipe Fittings,” Bull. Jpn. Soc. Mech. Eng., 12(53), pp. 1041–1050.
Gardel, A. , 1957, “ Pressure Drops in Flows Through T-Shaped Fittings,” Bull. Technique De La Suisse Romande, 9, pp. 143–148.
Ito, H. , and Imai, K. , 1973, “ Energy Losses at 90° Pipe Junctions,” J. Hydraulics Div., 99(9), pp. 1353–1368. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0020090
He, X. , and Ku, D. N. , 1995, “ Flow in T-Bifurcations: Effect of the Sharpness of the Flow Divider,” Biorheology, 32(4), pp. 447–458. [CrossRef] [PubMed]
Paal, G. , Pinho, F. , and Maia, R. , 2006, “ The Effect of Corner Radius on the Energy Loss in 90° T-Junction Turbulent Flows,” The 13th International Conference on Modelling Fluid Flow (CMFF), Budapest, Hungary, Sept. 6–9, pp. 470–477. https://www.researchgate.net/publication/242157868_THE_EFFECT_OF_CORNER_RADIUS_ON_THE_ENERGY_LOSS_IN_90_T-_JUNCTION_TURBULENT_FLOWS
Gijsen, F. J. H. , van de Vosse, F. N. , and Janssen, J. D. , 1999, “ The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model,” J. Biomech., 32(6), pp. 601–608. [CrossRef] [PubMed]
Foo, K. , Myose, R. , and Hoffmann, K. A. , 2015, “ Shear-Thinning Properties of Blood in Large Arteries,” AIAA Paper No. 2015-2914.
Johnston, B. M. , Johnston, P. R. , Corney, S. , and Kilpatrick, D. , 2004, “ Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations,” J. Biomech., 37(5), pp. 709–720. [CrossRef] [PubMed]
Morales, H. G. , Larrabide, I. , Geers, A. J. , Aguilar, M. L. , and Frangi, A. F. , 2013, “ Newtonian and Non-Newtonian Blood Flow in Coiled Cerebral Aneurysms,” J. Biomech., 46(13), pp. 2158–2164. [CrossRef] [PubMed]
DeRubertis, B. G. , Alktaifi, A. , Finn, J. P. , Farley, S. , Saleh, R. S. , Moore, W. S. , and Lawrence, P. F. , 2011, “ RR7. Anatomic Assessment of the Aortic Arch: Relationship Between Arch Anatomy and Age,” J. Vasc. Surg., 53(6), p. 95S. [CrossRef]
Ramchandani, M. , and Bedeir, K. , 2011, “ Vascular Connector Devices Increase the Availability of Minimally Invasive Cardiac Surgery to Ischemic Heart Patients,” HSR Proc. Intensive Care Cardiovasc. Anesth., 3(4), pp. 239–243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563438/ [PubMed]
Izutani, H. , Yoshitatsu, M. , Kawamoto, J. , and Katayama, K. , 2005, “ A Case of Ostial Stenosis With the PAS-Port Proximal Anastomosis System in Off-Pump Coronary Artery Bypass Grafting,” Interact Cardiovasc. Thorac. Surg., 4(4), pp. 341–343. [CrossRef] [PubMed]
Liepsch, D. , Moravec, S. , Rastogi, A. K. , and Vlachos, N. S. , 1982, “ Measurement and Calculations of Laminar Flow in a Ninety Degree Bifurcation,” J. Biomech., 15(7), pp. 473–485. [CrossRef] [PubMed]
Biswas, D. , Casey, D. M. , Crowder, D. C. , Steinman, D. A. , Yun, Y. H. , and Loth, F. , 2016, “ Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions,” J. Biomech., 138(7), p. 071001. [CrossRef]
Roach, M. R. , Scott, S. , and Ferguson, G. G. , 1972, “ The Hemodynamic Importance of the Geometry of Bifurcations in the Circle of Willis (Glass Model Studies),” Stroke, 3(3), pp. 255–267. [CrossRef] [PubMed]
Sierra-Espinosa, F. Z. , Bates, C. J. , and O’Doherty, T. , 2000, “ Turbulent Flow in a 90° Pipe Junction. Part 1: Decay of Fluctuation Upstream of the Flow Bifurcation,” Comput. Fluids, 29(2), pp. 197–213. [CrossRef]
Sierra-Espinosa, F. Z. , Bates, C. J. , and O’Doherty, T. , 2000, “ Turbulent Flow in a 90° Pipe Junction. Part 2: Reverse Flow at the Branch Exit,” Comput. Fluids, 29(2), pp. 215–233. [CrossRef]
Khandelwal, V. , Dhiman, A. , and Baranyi, L. , 2015, “ Laminar Flow of Non-Newtonian Shear-Thinning Fluids in a T-Channel,” Comput. Fluids, 108, pp. 79–91. [CrossRef]


Grahic Jump Location
Fig. 1

Geometry and parameters of the diverging tee model

Grahic Jump Location
Fig. 2

Computational grid for the flow field in the diverging tee models

Grahic Jump Location
Fig. 3

(a) Comparison of the separation and reattachment points of the recirculation zones at the inner wall of the branch with different edge radii and (b) comparison of the velocity profiles between the numerical results and the experimental results for a diverging tee with R = 0 at Re = 469

Grahic Jump Location
Fig. 4

Variation in the recirculation length with respect to the flow rate ratio for diverging tees with R = 0 and R = 0.2 at Re = 1817

Grahic Jump Location
Fig. 5

The evolution of the separation and reattachment points of the recirculation zone with respect to the flow rate ratio for models with d2/d1 = 0.2 and R = 0.2 at 227 < Re < 1817. The minimum β corresponding to the separation-free condition is denoted by the critical flow rate ratio βcrit.

Grahic Jump Location
Fig. 6

Distribution of the critical flow rate ratio βcrit plotted as a function of the normalized edge radius for the round-edge tee with d2/d1 = 0.167 at Re = 1817

Grahic Jump Location
Fig. 7

Variation of the critical flow rate ratio βcrit as a function of the radius of curvature for models with different diameter ratios at Re = 1817. The dashed line shows the local minimum of each curve, which is denoted by the minimum critical flow rate ratio βmin,crit.

Grahic Jump Location
Fig. 8

Variation in the critical flow rate ratio βcrit as a function of the normalized edge radius R for the round-edge tees with a diameter ratio d2/d1 = 0.133 at different Reynolds numbers



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In