Research Papers: Fundamental Issues and Canonical Flows

Three-Dimensional Design Simulations of a High-Energy Density Reshock Experiment at the National Ignition Facility

[+] Author and Article Information
Ping Wang

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: wang32@llnl.gov

Kumar S. Raman

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: raman5@llnl.gov

Stephan A. MacLaren

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: maclaren2@llnl.gov

Channing M. Huntington

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: huntington4@llnl.gov

Sabrina R. Nagel

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: nagel7@llnl.gov

Kirk A. Flippo

Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: kflippo@lanl.gov

Shon T. Prisbrey

Lawrence Livermore National Laboratory,
Livermore, CA 94551
e-mail: prisbrey1@llnl.gov

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 9, 2016; final manuscript received September 28, 2017; published online December 21, 2017. Assoc. Editor: Daniel Maynes. The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

J. Fluids Eng 140(4), 041207 (Dec 21, 2017) (10 pages) Paper No: FE-16-1814; doi: 10.1115/1.4038532 History: Received December 09, 2016; Revised September 28, 2017

We present simulations of a new experimental platform at the National Ignition Facility (NIF) for studying the hydrodynamic instability growth of a high-energy density (HED) fluid interface that undergoes multiple shocks, i.e., is “reshocked.” In these experiments, indirect-drive laser cavities drive strong shocks through an initially solid, planar interface between a high-density plastic and low-density foam, in either one or both directions. The first shock turns the system into an unstable fluid interface with the premachined initial condition that then grows via the Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Backlit X-ray imaging is used to visualize the instability growth at different times. Our main result is that this new HED reshock platform is established and that the initial data confirm the experiment operates in a hydrodynamic regime similar to what simulations predict. The simulations also reveal new types of edge effects that can disturb the experiment at late times and suggest ways to mitigate them.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Mikaelian, K. O. , 1985, “ Richtmyer-Meshkov Instabilities in Stratified Fluids,” Phys. Rev. A, 31(1), p. 410. [CrossRef]
Mikaelian, K. O. , 1989, “ Turbulent Mixing Generated by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities,” Phys. D: Nonlinear Phenom., 36(3), pp. 343–357. [CrossRef]
Moses, E. I. , Lindl, J. D. , Spaeth, M. L. , Patterson, R. W. , Sawicki, R. H. , Atherton, L. J. , Baisden, P. A. , Lagin, L. J. , Larson, D. W. , MacGowan, B. J. , Miller, G. H. , Rardin, D. C. , Roberts, V. S. , Van Wonterghem, B. M. , and Wegner, P. J. , 2016, “ Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research,” Fusion Sci. Technol., 69(1), pp. 1–24. [CrossRef]
Lindl, J. D. , 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive, American Institute of Physics, Springer-Verlag, New York.
Atzeni, S. , and Jürgen, M-T-V. , 2004, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter, Vol. 125, Oxford University Press, New York.
Haan, S. W. , Lindl, J. D. , Callahan, D. A. , Clark, D. S. , Salmonson, J. D. , Hammel, B. A. , Atherton, L. J. , Cook, R. C. , Edwards, M. J. , Glenzer, S. , Hamza, A. V. , Hatchett, S. P. , Herrmann, M. C. , Hinkel, D. E. , Ho, D. D. , Huang, H. , Jones, O. S. , Kline, J. , Kyrala, G. , Landen, O. L. , MacGowan, B. J. , Marinak, M. M. , Meyerhofer, D. D. , Milovich, J. L. , Moreno, K. A. , Moses, E. I. , Munro, D. H. , Nikroo, A. , Olson, R. E. , Peterson, K. , Pollaine, S. M. , Ralph, J. E. , Robey, H. F. , Spears, B. K. , Springer, P. T. , Suter, L. J. , Thomas, C. A. , Town, R. P. , Vesey, R. S. , Weber, V. , Wilkens, H. L. , and Wilson, D. C. , 2011, “ Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility,” Phys. Plasmas, 18(5), p. 051001. [CrossRef]
Ma, T. , Patel, P. K. , Izumi, N. , Springer, P. T. , Key, M. H. , Atherton, L. J. , Barrios, M. A. , Benedetti, L. R. , Bionta, R. , Bond, E. , Bradley, D. K. , Caggiano, J. , Callahan, D. A. , Casey, D. T. , Celliers, P. M. , Cerjan, C. J. , Church, J. A. , Clark, D. S. , Dewald, E. L. , Dittrich, T. R. , Dixit, S. N. , Döppner, T. , Dylla-Spears, R. , Edgell, D. H. , Epstein, R. , Field, J. , Fittinghoff, D. N. , Frenje, J. A. , Gatu Johnson, M. , Glenn, S. , Glenzer, S. H. , Grim, G. , Guler, N. , Haan, S. W. , Hammel, B. A. , Hatarik, R. , Herrmann, H. W. , Hicks, D. , Hinkel, D. E. , Berzak Hopkins, L. F. , Hsing, W. W. , Hurricane, O. A. , Jones, O. S. , Kauffman, R. , Khan, S. F. , Kilkenny, J. D. , Kline, J. L. , Kozioziemski, B. , Kritcher, A. , Kyrala, G. A. , Landen, O. L. , Lindl, J. D. , Le Pape, S. , MacGowan, B. J. , Mackinnon, A. J. , MacPhee, A. G. , Meezan, N. B. , Merrill, F. E. , Moody, J. D. , Moses, E. I. , Nagel, S. R. , Nikroo, A. , Pak, A. , Parham, T. , Park, H.-S. , Ralph, J. E. , Regan, S. P. , Remington, B. A. , Robey, H. F. , Rosen, M. D. , Rygg, J. R. , Ross, J. S. , Salmonson, J. D. , Sater, J. , Sayre, D. , Schneider, M. B. , Shaughnessy, D. , Sio, H. , Spears, B. K. , Smalyuk, V. , Suter, L. J. , Tommasini, R. , Town, J. R. P. , Volegov, P. L. , Wan, A. , Weber, S. V. , Widmann, K. , Wilde, C. H. , Yeamans, C. , and Edwards, M. J. , 2017, “ The Role of Hot Spot Mix in the Low-Foot and High-Foot Implosions on the NIF,” Phys. Plasmas, 24 (5), p. 056311. [CrossRef]
Vetter, M. , and Sturtevant, B. , 1995, “ Experiments on the Richtmyer-Meshkov Instability of an Air/SF 6 Interface,” Shock Waves, 4(5), pp. 247–252. [CrossRef]
Poggi, F. , Thorembey, M. H. , and Rodriguez, G. , 1998, “ Velocity Measurements in Turbulent Gaseous Mixtures Induced by Richtmyer–Meshkov Instability,” Phys. Fluids, 10(11), pp. 2698–2700. [CrossRef]
Leinov, E. , Malamud, G. , Elbaz, Y. , Levin, L. A. , Ben-Dor, G. , Shvarts, D. , and Sadot, O. , 2009, “ Experimental and Numerical Investigation of the Richtmyer–Meshkov Instability Under Re-Shock Conditions,” J. Fluid Mech., 626, pp. 449–475. [CrossRef]
Balasubramanian, S. , Orlicz, G. C. , Prestridge, K. P. , and Balakumar, B. J. , 2012, “ Experimental Study of Initial Condition Dependence on Richtmyer-Meshkov Instability in the Presence of Reshock,” Phys. Fluids, 24(3), p. 034103. [CrossRef]
Jacobs, J. W. , Krivets, V. V. , Tsiklashvili, V. , and Likhachev, O. A. , 2013, “ Experiments on the Richtmyer–Meshkov Instability With an Imposed, Random Initial Perturbation,” Shock Waves, 23(4), pp. 407–413. [CrossRef]
Reilly, D. , McFarland, J. , Mohaghar, M. , and Ranjan, D. , 2015, “ The Effects of Initial Conditions and Circulation Deposition on the Inclined-Interface Reshocked Richtmyer–Meshkov Instability,” Exp. Fluids, 56(8), p. 168. [CrossRef]
Robey, H. F. , Zhou, Y. , Buckingham, A. C. , Keiter, P. , Remington, B. A. , and Drake, R. P. , 2003, “ The Time Scale for the Transition to Turbulence in a High Reynolds Number, Accelerated Flow,” Phys. Plasmas, 10(3), pp. 614–622. [CrossRef]
Zhou, Y. , 2007, “ Unification and Extension of the Similarity Scaling Criteria and Mixing Transition for Studying Astrophysics Using High Energy Density Laboratory Experiments or Numerical Simulations,” Phys. Plasmas, 14(8), p. 082701. [CrossRef]
Latini, M. , Schilling, O. , and Don, W. S. , 2007, “ Effects of WENO Flux Reconstruction Order and Spatial Resolution on Reshocked Two-Dimensional Richtmyer–Meshkov Instability,” J. Comput. Phys., 221(2), pp. 805–836. [CrossRef]
Mikaelian, K. O. , 2011, “ Extended Model for Richtmyer–Meshkov Mix,” Phys. D: Nonlinear Phenom., 240(11), pp. 935–942. [CrossRef]
Thornber, B. , Drikakis, D. , Youngs, D. L. , and Williams, R. J. R. , 2011, “ Growth of a Richtmyer-Meshkov Turbulent Layer after Reshock,” Phys. Fluids, 23(9), p. 095107. [CrossRef]
Lombardini, M. , Hill, D. J. , Pullin, D. I. , and Meiron, D. I. , 2011, “ Atwood Ratio Dependence of Richtmyer–Meshkov Flows Under Reshock Conditions Using Large-Eddy Simulations,” J. Fluid Mech., 670, pp. 439–480. [CrossRef]
Morgan, R. V. , Aure, R. , Stockero, J. D. , Greenough, J. A. , Cabot, W. , Likhachev, O. A. , and Jacobs, J. W. , 2012, “ On the Late-Time Growth of the Two-Dimensional Richtmyer–Meshkov Instability in Shock Tube Experiments,” J. Fluid Mech., 712, pp. 354–383. [CrossRef]
Morán-López, J. T. , and Schilling, O. , 2013, “ Multicomponent Reynolds-Averaged Navier–Stokes Simulations of Reshocked Richtmyer–Meshkov Instability-Induced Mixing,” High Energy Density Phys., 9(1), pp. 112–121. [CrossRef]
Haines, B. M. , Grinstein, F. F. , Welser-Sherrill, L. , and Fincke, J. R. , 2013, “ Simulations of Material Mixing in Laser-Driven Reshock Experiments,” Phys. Plasmas, 20(2), p. 022309. [CrossRef]
Mikaelian, K. O. , 2015, “ Testing an Analytic Model for Richtmyer–Meshkov Turbulent Mixing Widths,” Shock Waves, 25(1), pp. 35–45. [CrossRef]
Grinstein, F. F. , 2017, “ Initial Conditions and Modeling for Simulations of Shock Driven Turbulent Material Mixing,” Comput. Fluids, 151, pp. 58–72. [CrossRef]
Doss, F. W. , Kline, J. L. , Flippo, K. A. , Perry, T. S. , DeVolder, B. G. , Tregillis, I. , Loomis, E. N. , Merritt, E. C. , Murphy, T. J. , Welser-Sherrill, L. , and Fincke, J. R. , 2015, “ The Shock/Shear Platform for Planar Radiation-Hydrodynamics Experiments on the National Ignition Facility A,” Phys. Plasmas, 22(5), p. 056303. [CrossRef]
Richtmyer, R. D. , 1960, “ Taylor Instability in Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math., 13(2), pp. 297–319. [CrossRef]
Meshkov, E. E. , 1969, “ Instability of the Interface of Two Gases Accelerated by a Shock Wave,” Fluid Dyn., 4(5), pp. 101–104. [CrossRef]
Sharp, D. H. , 1984, “ An Overview of Rayleigh-Taylor Instability,” Phys. D: Nonlinear Phenom., 12(1–3), pp. 3–10. [CrossRef]
Brouillette, M. , 2002, “ The Richtmyer-Meshkov Instability,” Annu. Rev. Fluid Mech., 34(1), pp. 445–468. [CrossRef]
Bonazza, R. , 2017, “ A Review of the Richtmyer-Meshkov Instability From an Experimental Perspective,” 30th International Symposium on Shock Waves (ISSW), Tel-Aviv, Israel, July 19–24, pp. 23–28.
Zhou, Y. , 2017, “ Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing—I,” Phys. Rep., epub.
Zhou, Y. , 2017, “ Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing—II,” Phys. Rep., epub.
Flippo, K. A. , Kline, J. L. , Doss, F. W. , Loomis, E. N. , Emerich, M. , Devolder, B. , Murphy, T. J. , Fournier, K. B. , Kalantar, D. H. , Regan, S. P. , Barrios, M. A. , Merritt, E. C. , Perry, T. S. , Tregillis, I. L. , Welser-Sherrill, L. , and Fincke, J. R. , 2014, “ Development of a Big Area BackLighter for High Energy Density Experiments,” Rev. Sci. Instrum., 85(9), p. 093501. [CrossRef] [PubMed]
Oertel, J. A. , Aragonez, R. , Archuleta, T. , Barnes, C. , Casper, L. , Fatherley, V. , Heinrichs, T. , King, R. , Landers, D. , Lopez, F. , and Sanchez, P. , 2006, “ Gated X-Ray Detector for the National Ignition Facility,” Rev. Sci. Instrum., 77(10), p. 10E308. [CrossRef]
Nagel, S. R. , Raman, K. S. , Huntington, C. M. , MacLaren, S. A. , Wang, P. , Barrios, M. A. , Baumann, T. , Bender, J. D. , Benedetti, L. R. , Doane, D. M. , Felker, S. , Fitzsimmons, P. , Flippo, K. A. , Holder, J. P. , Kaczala, D. N. , Perry, T. S. , Seugling, R. M. , Savage, L. , and Zhou, Y. , 2017, “ A Platform for Studying the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities in a Planar Geometry at High Energy Density at the National Ignition Facility,” Phys. Plasmas, 24(7), p. 072704. [CrossRef]
Jacobs, J. W. , and Krivets, V. V. , 2005, “ Experiments on the Late-Time Development of Single-Mode Richtmyer–Meshkov Instability,” Phys. Fluids, 17(3), p. 034105. [CrossRef]
Wilson, B. M. , Mejia-Alvarez, R. , and Prestridge, K. P. , 2016, “ Single-Interface Richtmyer–Meshkov Turbulent Mixing at the Los Alamos Vertical Shock Tube,” ASME J. Fluids Eng., 138(7), p. 070901. [CrossRef]
Orlicz, G. C. , Balakumar, B. J. , Tomkins, C. D. , and Prestridge, K. P. , 2009, “ A Mach Number Study of the Richtmyer–Meshkov Instability in a Varicose, Heavy-Gas Curtain,” Phys. Fluids, 21(6), p. 064102. [CrossRef]
Dimonte, G. , and Schneider, M. , 1997, “ Turbulent Richtmyer–Meshkov Instability Experiments With Strong Radiatively Driven Shocks,” Phys. Plasmas, 4(12), pp. 4347–4357. [CrossRef]
Weber, C. R. , Clark, D. S. , Cook, A. W. , Busby, L. E. , and Robey, H. F. , 2014, “ Inhibition of Turbulence in Inertial-Confinement-Fusion Hot Spots by Viscous Dissipation,” Phys. Rev. E, 89(5), p. 053106. [CrossRef]
Haines, B. M. , Vold, E. L. , Molvig, K. , Aldrich, C. , and Rauenzahn, R. , 2014, “ The Effects of Plasma Diffusion and Viscosity on Turbulent Instability Growth,” Phys. Plasmas, 21(9), p. 092306. [CrossRef]
Rana, V. , Lim, H. , Melvin, J. , Glimm, J. , Cheng, B. , and Sharp, D. H. , 2017, “ Mixing With Applications to Inertial-Confinement-Fusion Implosions,” Phys. Rev. E, 95(1), p. 013203. [CrossRef] [PubMed]
Vold, E. L. , Rauenzahn, R. M. , Aldrich, C. H. , Molvig, K. , Simakov, A. N. , and Haines, B. M. , 2017, “ Plasma Transport in an Eulerian AMR Code,” Phys. Plasmas, 24(4), p. 042702. [CrossRef]
Thomas, V. A. , and Kares, R. J. , 2012, “ Drive Asymmetry and the Origin of Turbulence in an ICF Implosion,” Phys. Rev. Lett., 109(7), p. 075004. [CrossRef] [PubMed]
Bellei, C. , and Amendt, P. A. , 2017, “ Shock-Induced Mix Across an Ideal Interface,” Phys. Plasmas, 24(4), p. 040703. [CrossRef]
Budil, K. S. , Remington, B. A. , Peyser, T. A. , Mikaelian, K. O. , Miller, P. L. , Woolsey, N. C. , Wood-Vasey, W. M. , and Rubenchik, A. M. , 1996, “ Experimental Comparison of Classical versus Ablative Rayleigh-Taylor Instability,” Phys. Rev. Lett., 76(24), p. 4536. [CrossRef] [PubMed]
Peyser, T. A. , Miller, P. L. , Stry, P. E. , Budil, K. S. , Burke, E. W. , Wojtowicz, D. A. , Griswold, D. L. , Hammel, B. A. , and Phillion, D. W. , 1995, “ Measurement of Radiation-Driven Shock-Induced Mixing From Nonlinear Initial Perturbations,” Phys. Rev. Lett., 75(12), p. 2332. [CrossRef] [PubMed]
Azechi, H. , Sakaiya, T. , Fujioka, S. , Tamari, Y. , Otani, K. , Shigemori, K. , Nakai, M. , Shiraga, H. , Miyanaga, N. , and Mima, K. , 2007, “ Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability,” Phys. Rev. Lett., 98(4), p. 045002. [CrossRef] [PubMed]
Aglitskiy, Y. , Velikovich, A. L. , Karasik, M. , Metzler, N. , Zalesak, S. T. , Schmitt, A. J. , Phillips, L. , Gardner, J. H. , Serlin, V. , Weaver, J. L. , and Obenschain, S. P. , 2010, “ Basic Hydrodynamics of Richtmyer–Meshkov-Type Growth and Oscillations in the Inertial Confinement Fusion-Relevant Conditions,” Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci., 368(1916), pp. 1739–1768. [CrossRef]
Smalyuk, V. A. , Sadot, O. , Delettrez, J. A. , Meyerhofer, D. D. , Regan, S. P. , and Sangster, T. C. , 2005, “ Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets,” Phys. Rev. Lett., 95(21), p. 215001. [CrossRef] [PubMed]
Di Stefano, C. A. , Malamud, G. , Kuranz, C. C. , Klein, S. R. , Stoeckl, C. , and Drake, R. P. , 2015, “ Richtmyer-Meshkov Evolution Under Steady Shock Conditions in the High-Energy-Density Regime,” Appl. Phys. Lett., 106(11), p. 114103. [CrossRef]
Di Stefano, C. A. , Rasmus, A. M. , Doss, F. W. , Flippo, K. A. , Hager, J. D. , Kline, J. L. , and Bradley, P. A. , 2017, “ Multimode Instability Evolution Driven by Strong, High-Energy-Density Shocks in a Rarefaction-Reflected Geometry,” Phys. Plasmas, 24(5), p. 052101. [CrossRef]
Welser-Sherrill, L. , Fincke, J. , Doss, F. , Loomis, E. , Flippo, K. , Offermann, D. , Keiter, P. , Haines, B. , and Grinstein, F. , 2013, “ Two Laser-Driven Mix Experiments to Study Reshock and Shear,” High Energy Density Phys., 9(3), pp. 496–499. [CrossRef]
Darlington, R. M. , McAbee, T. L. , and Rodrigue, G. , 2002, “ Large Eddy Simulation and ALE Mesh Motion in Rayleigh–Taylor Instability Simulation,” Comput. Phys. Commun., 144(3), pp. 261–276. [CrossRef]
Sharp, R. W. , and Barton, R. T. , 1981, “ HEMP Advection Model,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCID-17809. https://www.osti.gov/scitech/biblio/6737790
Kolev, T. V. , and Rieben, R. N. , 2009, “ A Tensor Artificial Viscosity Using a Finite Element Approach,” J. Comput. Phys., 228(22), pp. 8336–8366. [CrossRef]
Raman, K. S. , Hurricane, O. A. , Park, H. S. , Remington, B. A. , Robey, H. , Smalyuk, V. A. , Drake, R. P. , Krauland, C. M. , Kuranz, C. C. , Hansen, J. F. , and Harding, E. C. , 2012, “ Three-Dimensional Modeling and Analysis of a High Energy Density Kelvin-Helmholtz Experiment,” Phys. Plasmas, 19(9), p. 092112. [CrossRef]
Dittrich, T. R. , Hurricane, O. A. , Callahan, D. A. , Dewald, E. L. , Döppner, T. , Hinkel, D. E. , Hopkins, L. B. , Le Pape, S. , Ma, T. , Milovich, J. L. , and Moreno, J. C. , 2014, “ Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility,” Phys. Rev. Lett., 112(5), p. 055002. [CrossRef] [PubMed]
Casey, D. T. , Smalyuk, V. A. , Tipton, R. E. , Pino, J. E. , Grim, G. P. , Remington, B. A. , Rowley, D. P. , Weber, S. V. , Barrios, M. , Benedetti, L. R. , and Bleuel, D. L. , 2014, “ Development of the CD Symcap Platform to Study Gas-Shell Mix in Implosions at the National Ignition Facility,” Phys. Plasmas, 21(9), p. 092705. [CrossRef]
Hurricane, O. A. , Hansen, J. F. , Robey, H. F. , Remington, B. A. , Bono, M. J. , Harding, E. C. , Drake, R. P. , and Kuranz, C. C. , 2009, “ A High Energy Density Shock Driven Kelvin–Helmholtz Shear Layer Experiment,” Phys. Plasmas, 16(5), p. 056305. [CrossRef]
Clark, D. S. , Hinkel, D. E. , Eder, D. C. , Jones, O. S. , Haan, S. W. , Hammel, B. A. , Marinak, M. M. , Milovich, J. L. , Robey, H. F. , Suter, L. J. , and Town, R. P. J. , 2013, “ Detailed Implosion Modeling of Deuterium-Tritium Layered Experiments on the National Ignition Facility,” Phys. Plasmas, 20(5), p. 056318. [CrossRef]
Raman, K. S. , Smalyuk, V. A. , Casey, D. T. , Haan, S. W. , Hoover, D. E. , Hurricane, O. A. , Kroll, J. J. , Nikroo, A. , Peterson, J. L. , Remington, B. A. , Robey, H. F. , Clark, D. S. , Hammel, B. A. , Landen, O. L. , Marinak, M. M. , Munro, D. H. , Peterson, K. J. , and Salmonson, J. , 2014, “ An In-Flight Radiography Platform to Measure Hydrodynamic Instability Growth in Inertial Confinement Fusion Capsules at the National Ignition Facility,” Phys. Plasmas, 21(7), p. 072710. [CrossRef]
Wang, P. , Zhou, Y. , MacLaren, S. A. , Huntington, C. M. , Raman, K. S. , Doss, F. W. , and Flippo, K. A. , 2015, “ Three-and Two-Dimensional Simulations of Counter-Propagating Shear Experiments at High Energy Densities at the National Ignition Facility,” Phys. Plasmas, 22(11), p. 112701. [CrossRef]
Hurricane, O. A. , Smalyuk, V. A. , Raman, K. , Schilling, O. , Hansen, J. F. , Langstaff, G. , Martinez, D. , Park, H. S. , Remington, B. A. , Robey, H. F. , and Greenough, J. A. , 2012, “ Validation of a Turbulent Kelvin-Helmholtz Shear Layer Model Using a High-Energy-Density Omega Laser Experiment,” Phys. Rev. Lett., 109(15), p. 155004. [CrossRef] [PubMed]
Morgan, B. E. , and Wickett, M. E. , 2015, “ Three-Equation Model for the Self-Similar Growth of Rayleigh-Taylor and Richtmyer-Meskov Instabilities,” Phys. Rev. E, 91(4), p. 043002. [CrossRef]
Morgan, B. E. , and Greenough, J. A. , 2016, “ Large-Eddy and Unsteady RANS Simulations of a Shock-Accelerated Heavy Gas Cylinder,” Shock Waves, 26(4), pp. 355–383. [CrossRef]
Olson, B. J. , and Greenough, J. , 2014, “ Large Eddy Simulation Requirements for the Richtmyer-Meshkov Instability,” Phys. Fluids, 26(4), p. 044103. [CrossRef]
McFarland, J. A. , Greenough, J. A. , and Ranjan, D. , 2013, “ Investigation of the Initial Perturbation Amplitude for the Inclined Interface Richtmyer–Meshkov Instability,” Phys. Scripta, 2013, p. 014014. [CrossRef]
McFarland, J. A. , Reilly, D. , Black, W. , Greenough, J. A. , and Ranjan, D. , 2015, “ Modal Interactions Between a Large-Wavelength Inclined Interface and Small-Wavelength Multimode Perturbations in a Richtmyer-Meshkov Instability,” Phys. Rev. E, 92(1), p. 013023. [CrossRef]
Henry de Frahan, M. T. , Belof, J. L. , Cavallo, R. M. , Raevsky, V. A. , Ignatova, O. N. , Lebedev, A. , Ancheta, D. S. , El-dasher, B. S. , Florando, J. N. , Gallegos, G. F. , Johnsen, E. , and LeBlanc, M. M. , 2015, “ Experimental and Numerical Investigations of Beryllium Strength Models Using the Rayleigh-Taylor Instability,” J. Appl. Phys., 117(22), p. 225901. [CrossRef]
Harte, J. A. , Alley, W. E. , Bailey, D. S. , Eddleman, J. L. , and Zimmerman, G. B. , 1996, “ LASNEX—A 2-D Physics Code for Modeling ICF,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-LR-105821-96-4. https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiQpNy-r_fXAhVBOSYKHVd4D5gQFggmMAA&url=http%3A%2F%2Fwww.ibrarian.net%2Fnavon%2Fpaper%2FLASNEX__A_2_D_P_HYSICSCODE_FORMODELINGICF.pdf%3Fpaperid%3D4395096&usg=AOvVaw1w1uJAVQkA6Hp8PxEJYpYA
Suter, L. J. , Kauffman, R. L. , Darrow, C. B. , Hauer, A. A. , Kornblum, H. , Landen, O. L. , Orzechowski, T. J. , Phillion, D. W. , Porter, J. L. , Powers, L. V. , Richard, A. , Rosen, M. D. , Thiessen, A. R. , and Wallace, R. , 1996, “ Radiation Drive in Laser‐Heated Hohlraums,” Phys. Plasmas, 3(5), pp. 2057–2062. [CrossRef]
Olson, R. E. , Bradley, D. K. , Rochau, G. A. , Collins, G. W. , Leeper, R. J. , and Suter, L. J. , 2006, “ Time-Resolved Characterization of Hohlraum Radiation Temperature Via Interferometer Measurement of Quartz Shock Velocity,” Rev. Sci. Instrum., 77(10), p. 10E523. [CrossRef]
Hurricane, O. A. , Glendinning, S. G. , Remington, B. A. , Drake, R. P. , and Dannenberg, K. K. , 2001, “ Late-Time Hohlraum Pressure Dynamics in Supernova Remnant Experiments,” Phys. Plasmas, 8(6), pp. 2609–2612. [CrossRef]
Childs, H. , Brugger, E. , Whitlock, B. , Meredith, J. , Ahern, S. , Pugmire, D. , Biagas, K. , Miller, M. , Harrison, C. , Weber G. H. , Krishnan, H. , Fogal, T. , Sanderson, A. , Garth, C. , Bethel, E. W. , Camp, D. , Rubel, O. , Durant, M. , Favre, J. , and Navratil, P. , 2012, “ VisIt: An End-User Tool for Visualization and Analyzing Very Large Data,” High Performance Visualization: Enabling Extreme-Scale Scientific Insight (CRC Computational Science Series), Taylor and Francis, Boca Raton, FL, p. 1. [CrossRef]
Doss, F. W. , Robey, H. F. , Drake, R. P. , and Kuranz, C. C. , 2009, “ Wall Shocks in High-Energy-Density Shock Tube Experiments,” Phys. Plasmas, 16(11), p. 112705. [CrossRef]
Aufderheide, M. B. , Henderson, G. , von Wittenau, A. E. S. , Slone, D. M. , and Martz, H. E. , 2004, “ HADES, a Code for Simulating a Variety of Radiographic Techniques,” IEEE Symposium Conference Record Nuclear Science (NSSMIC), Rome, Italy, Oct. 16–22, pp. 2579–2583.
Haan, S. W. , 1989, “ Onset of Nonlinear Saturation for Rayleigh-Taylor Growth in the Presence of a Full Spectrum of Modes,” Phys. Rev. A, 39(11), p. 5812. [CrossRef]
Goncharov, V. N. , 2002, “ Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers,” Phys. Rev. Lett., 88(13), p. 134502. [CrossRef] [PubMed]
Zhang, Q. , and Guo, W. , 2016, “ Universality of Finger Growth in Two-Dimensional Rayleigh–Taylor and Richtmyer–Meshkov Instabilities With All Density Ratios,” J. Fluid Mech., 786, pp. 47–61. [CrossRef]
Thornber, B. , Drikakis, D. , Youngs, D. L. , and Williams, R. J. R. , 2010, “ The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability,” J. Fluid Mech., 654, pp. 99–139. [CrossRef]
Tritschler, V. K. , Olson, B. J. , Lele, S. K. , Hickel, S. , Hu, X. Y. , and Adams, N. A. , 2014, “ On the Richtmyer–Meshkov Instability Evolving From a Deterministic Multimode Planar Interface,” J. Fluid Mech., 755, pp. 429–462. [CrossRef]
Zhou, Y. , Cabot, W. H. , and Thornber, B. , 2016, “ Asymptotic Behavior of the Mixed Mass in Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flows,” Phys. Plasmas, 23(5), p. 052712. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Cartoon of the target used on the NIF. The gold hohlraums on the top and the bottom convert laser energy into uniform radiation baths that drive shocks into the first exposed plastic layer of the shock tube via ablation. (b) Blow-up view of the shock tube components used in the NIF target design.

Grahic Jump Location
Fig. 2

Cut-away image of the target geometry used in this numerical study

Grahic Jump Location
Fig. 3

2D and 3D meshes with five materials. Top figure showsan example of a low-density air mesh used in these simulations.

Grahic Jump Location
Fig. 4

Radiation temperature drives calculated from NIF shot N150729

Grahic Jump Location
Fig. 5

x − t visualization with log-density plot. Shocks are seeded at ∼0 ns. The first reshock of the interface is at ∼40 ns with the reflected initial shock causing a second reshock even at ∼52 ns.

Grahic Jump Location
Fig. 6

Velocity of the interface from the simulation without perturbations versus time: dotted line with the main drive only and solid line with the main drive and reshock drive

Grahic Jump Location
Fig. 7

Cut-away images from 3D numerical simulations showing the density for the single drive shock experiment at 50 ns (a) and 57 ns (b)

Grahic Jump Location
Fig. 8

Right-hand side images show experimental reshock radiographs at 45 and 50 ns. Left-hand side images are corresponding synthetic radiographs created from 3D simulations.

Grahic Jump Location
Fig. 9

Comparison of the single shock 3D simulations with the experiments for two different amplitude problems

Grahic Jump Location
Fig. 10

Cut-away images from 3D numerical simulations showing the density for the reshock experiment at 36 ns (a), 41 ns (b), and 48 ns (c)

Grahic Jump Location
Fig. 11

Left-hand side images are synthetic transmission radiographs from 3D numerical simulations for a single mode perturbation undergoing reshock. Images, from top to bottom, show interface just before reshock arrival (37 ns), reshock compression of the interface (43 ns), early post reshock growth of the interface (50 ns), and later post reshock growth of the single mode interface (57 ns). Right-hand side image is an experimental radiograph taken at 37 ns and is shown for comparison.

Grahic Jump Location
Fig. 12

(a) Cut-away of 3D simulation showing the main shock ablator and reshock ablator near the time that reshock occurs. Enlarged views in (b) and (c) showing only the ablators at the interface region reveal that the reshock ablator extends past the plane of the interface region at the edge of the shock tube for both possible directions of radiography.

Grahic Jump Location
Fig. 13

Two sets of images showing the impact of the opacity of the reshock ablator. Synthetic radiographs from 3D simulation of early campaign reshock experiments taken after the reshock. The postreshock mixing region is occluded with the opaque ablator (top) but can be seen with the present design (bottom). The analysis of this image and other experimental data from the dual-drive experiments will be documented separately.

Grahic Jump Location
Fig. 14

Comparison of 2D and 3D mix-width histories for an interface with two different initial amplitude conditions. Note the difference in the late-time mix-width behavior.

Grahic Jump Location
Fig. 15

Convergence study with four mesh resolutions. For our purposes, convergence occurs for ∼40 or more zones per wavelength.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In