0
Research Papers: Flows in Complex Systems

A Synthetic Jet Issuing From a Bio-Inspired Actuator With an Oscillating Nozzle Lip

[+] Author and Article Information
Zdeněk Trávníček

Institute of Thermomechanics of the Czech
Academy of Sciences,
Dolejškova 5,
Prague 8, 182 00, Czech Republic
e-mail: tr@it.cas.cz

Zuzana Broučková

Institute of Thermomechanics of the Czech
Academy of Sciences,
Dolejškova 5,
Prague 8, 182 00, Czech Republic

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received November 27, 2017; final manuscript received March 6, 2018; published online May 7, 2018. Assoc. Editor: M'hamed Boutaous.

J. Fluids Eng 140(10), 101104 (May 07, 2018) (5 pages) Paper No: FE-17-1759; doi: 10.1115/1.4039792 History: Received November 27, 2017; Revised March 06, 2018

A novel variant of a synthetic jet actuator (SJA) has been designed, manufactured, and tested. The novelty consists in a bio-inspired nozzle whose oscillating lip is formed by a flexible diaphragm rim. The working fluid is air, and the operating frequency is 65 Hz. The proposed SJA was tested by three experimental methods: phase-locked visualization of the nozzle lips, hot-wire anemometry, and momentum flux measurement using a precision scale. The results demonstrate advantages of the proposed SJA, namely, an increase in the momentum flux by 18% compared with that of a conventional SJA.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Smith, B. L. , and Glezer, A. , 1998, “The Formation and Evolution of Synthetic Jets,” Phys. Fluids, 10(9), pp. 2281–2297. [CrossRef]
Glezer, A. , and Amitay, M. , 2002, “Synthetic Jets,” Annu. Rev. Fluid Mech., 34(1), pp. 503–529. [CrossRef]
Mohseni, K. , and Mittal, R. , 2015, Synthetic Jets: Fundamentals and Applications, CRC Press, Boca Raton, FL.
Cater, J. E. , and Soria, J. , 2002, “The Evolution of Round Zero-Net-Mass-Flux Jets,” J. Fluid Mech., 472, pp. 167–200. [CrossRef]
Pack, L. G. , and Seifert, A. , 2001, “Periodic Excitation for Jet Vectoring and Enhanced Spreading,” J. Aircr., 38(3), pp. 486–495. [CrossRef]
Dauphinee, T. M. , 1957, “Acoustic Air Pump,” Rev. Sci. Instrum., 28(6), p. 456.
Mallinson, S. G. , Reizes, J. A. , and Hong, G. , 2001, “An Experimental and Numerical Study of Synthetic Jet Flow,” Aeronaut. J., 105(1043), pp. 41–49. [CrossRef]
Gallas, Q. , Holman, R. , Nishida, T. , Carroll, B. , Sheplak, M. , and Cattafesta, L. , 2003, “Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators,” AIAA J., 41(2), pp. 240–247. [CrossRef]
Holman, R. , Utturkar, Y. , Mittal, R. , Smith, B. L. , and Cattafesta, L. , 2005, “Formation Criterion for Synthetic Jets,” AIAA J., 43(10), pp. 2110–2116. [CrossRef]
Zhou, J. , Tang, H. , and Zhong, S. , 2009, “Vortex Roll-Up Criterion for Synthetic Jets,” AIAA J., 47(5), pp. 1252–1262. [CrossRef]
Trávníček, Z. , Broučková, Z. , and Kordík, J. , 2012, “Formation Criterion for Axisymmetric Synthetic Jets at High Stokes Numbers,” AIAA J., 50(9), pp. 2012–2017. [CrossRef]
Chiatto, M. , Capuano, F. , Coppola, G. , and de Luca, L. , 2017, “LEM Characterization of Synthetic Jet Actuators Driven by Piezoelectric Element: A Review,” Sensors, 17(6), p. 1216. [CrossRef]
Gilarranz, J. L. , Traub, L. W. , and Rediniotis, O. K. , 2005, “A New Class of Synthetic Jet Actuators–Part I: Design, Fabrication and Bench Top Characterization,” ASME J. Fluids Eng., 127(2), pp. 367–376. [CrossRef]
Wang, J.-J. , Shan, R.-Q. , Zhang, C. , and Feng, L.-H. , 2010, “Experimental Investigation of a Novel Two-Dimensional Synthetic Jet,” Eur. J. Mech. B-Fluids, 29(5), pp. 342–350. [CrossRef]
Trávníček, Z. , Vít, T. , and Tesař, V. , 2006, “Hybrid Synthetic Jet as the Non-Zero-Net-Mass-Flux Jet,” Phys. Fluids, 18(8), p. 081701. [CrossRef]
Kordík, J. , and Trávníček, Z. , 2003, “Novel Fluidic Diode for Hybrid Synthetic Jet Actuator,” ASME J. Fluids Eng., 135(10), p. 101101. [CrossRef]
Girfoglio, M. , Greco, C. S. , Chiatto, M. , and de Luca, L. , 2015, “Modelling of Efficiency of Synthetic Jet Actuators,” Sens. Actuator, A, 233, pp. 512–521. [CrossRef]
Smith, B. L. , and Glezer, A. , 2002, “Jet Vectoring Using Synthetic Jets,” J. Fluid Mech., 458, pp. 1–34. [CrossRef]
Amitay, M. , and Glezer, A. , 2002, “Controlled Transients of Flow Reattachment Over Stalled Airfoils,” Int. J. Heat Fluid Flow, 23(5), pp. 690–699. [CrossRef]
Mittal, R. , and Rampunggoon, P. , 2002, “On the Virtual Aeroshaping Effect of Synthetic Jets,” Phys. Fluids, 14(4), pp. 1533–1536. [CrossRef]
Chen, F.-J. , and Beeler, G. B. , 2002, “Virtual Shaping of a Two-Dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator,” AIAA Paper No. 2002-3273.
Ben Chiekh, M. , Bera, J. C. , and Sunyach, M. , 2003, “Synthetic Jet Control for Flows in a Diffuser: Vectoring, Spreading and Mixing Enhancement,” J. Turbul., 4(1), p. 32. https://www.tandfonline.com/doi/abs/10.1088/1468-5248/4/1/032
Yassour, Y. , Stricker, J. , and Wolfshtein, M. , 1986, “Heat Transfer From a Small Pulsating Jet,” 8th International Heat Transfer Conference, San Francisco, CA, Aug. 17–22, pp. 1183–1186. http://adsabs.harvard.edu/abs/1986hetr.conf.1183Y
Kercher, D. S. , Lee, J.-B. , Brand, O. , Allen, M. G. , and Glezer, A. , 2003, “Microjet Cooling Devices for Thermal Management of Electronics,” IEEE Trans. Compon. Pack. Technol., 26(2), pp. 359–366. [CrossRef]
Trávníček, Z. , and Tesař, V. , 2003, “Annular Synthetic Jet Used for Impinging Flow Mass–Transfer,” Int. J. Heat Mass Transfer, 46(17), pp. 3291–3297. [CrossRef]
Gillespie, M. B. , Black, W. Z. , Rinehart, C. , and Glezer, A. , 2006, “Local Convective Heat Transfer From a Constant Heat Flux Flat Plate Cooled by Synthetic Air Jets,” ASME J. Heat Transfer, 128(10), pp. 990–1000. [CrossRef]
Arik, M. , 2008, “Local Heat Transfer Coefficients of a High-Frequency Synthetic Jet During Impingement Cooling Over Flat Surfaces,” Heat Transf. Eng., 29(9), pp. 763–773. [CrossRef]
Chaudhari, M. , Puranik, B. , and Agrawal, A. , 2010, “Heat Transfer Characteristics of Synthetic Jet Impingement Cooling,” Int. J. Heat Mass Transfer, 53(5–6), pp. 1057–1069. [CrossRef]
Persoons, T. , McGuinn, A. , and Murray, D. B. , 2011, “A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet,” Int. J. Heat Mass Transfer, 54(17–18), pp. 3900–3908. [CrossRef]
Trávníček, Z. , and Vít, T. , 2015, “Impingement Heat/Mass Transfer to Hybrid Synthetic Jets and Other Reversible Pulsating Jets,” Int. J. Heat Mass Transfer, 85, pp. 473–487. [CrossRef]
Lee, A. , Yeoh, G. H. , Timchenko, V. , and Reizes, J. A. , 2012, “Flow Structure Generated by Two Synthetic Jets in a Channel: Effect of Phase and Frequency,” Sens. Actuators, A, 184, pp. 98–111. [CrossRef]
Broučková, Z. , Trávníček, Z. , and Vít, T. , 2019, “Synthetic and Continuous Jets Impinging on a Circular Cylinder,” Heat Transf. Eng., 40(13–14), epub.
Xia, Q. , and Zhong, S. , 2017, “Enhancement of In Line Mixing With Lateral Synthetic Jet Pairs at Low Reynolds Numbers: The Effect of Fluid Viscosity,” Flow Meas. Instrum., 53(Pt. B), pp. 308–316. [CrossRef]
Pavlova, A. A. , Otani, K. , and Amitay, M. , 2008, “Active Control of Sprays Using a Single Synthetic Jet Actuator,” Int. J. Heat Fluid Flow, 29(1), pp. 131–148. [CrossRef]
Villanueva, A. , Smith, C. , and Priya, S. , 2011, “A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators,” Bioinspir. Biomim., 6(3), p. 036004. [CrossRef] [PubMed]
Marut, K. , Stewart, C. , Michael, T. , Villanueva, A. , and Priya, S. , 2013, “A Jellyfish-Inspired Jet Propulsion Robot Actuated by an Iris Mechanism,” Smart Mater. Struct., 22(9), p. 094021. [CrossRef]
Dabiri, J. O. , and Gharib, M. , 2005, “Starting Flow Through Nozzles With Temporally Variable Exit Diameter,” J. Fluid Mech., 538(1), pp. 111–136. [CrossRef]
Albright, S. O. , and Solovitz, S. A. , 2016, “Examination of a Variable-Diameter Synthetic Jet,” ASME J. Fluids Eng., 138(12), p. 121103. [CrossRef]
Trávníček, Z. , Broučková, Z. , Kordík, J. , and Vít, T. , 2015, “Visualization of Synthetic Jet Formation in Air,” J. Vis., 18(4), pp. 595–609. [CrossRef]
Feero, M. A. , Lavoie, P. , and Sullivan, P. E. , 2015, “Influence of Cavity Shape on Synthetic Jet Performance,” Sens. Actuators, A, 223, pp. 1–10. [CrossRef]
Broučková, Z. , and Trávníček, Z. , 2015, “Visualization Study of Hybrid Synthetic Jets,” J. Vis., 18(4), pp. 581–593. [CrossRef]
Colin, S. P. , Costello, J. H. , Dabiri, J. O. , Villanueva, A. , Blottman, J. B. , Gemmell, B. J. , and Priya, S. , 2012, “Biomimetic and Live Medusae Reveal the Mechanistic Advantages of a Flexible Bell Margin,” PLoS One, 7(11), p. e48909. [CrossRef] [PubMed]
Krishnan, G. , and Mohseni, K. , 2009, “An Experimental and Analytical Investigation of Rectangular Synthetic Jets,” ASME J. Fluids Eng., 131(12), p. 121101. [CrossRef]
Kordík, J. , and Trávníček, Z. , 2017, “Optimal Diameter of Nozzles of Synthetic Jet Actuators Based on Electrodynamic Transducers,” Exp. Therm. Fluid Sci., 86, pp. 281–294. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic view of the investigated actuators: (a) front view, (b) proposed SJA with an oscillating nozzle lip, and (c) reference SJA

Grahic Jump Location
Fig. 2

Phase-averaged data during a cycle: (a) nozzle width along the z-axis and (b) nozzle width and jet flow velocity

Grahic Jump Location
Fig. 3

Frequency characteristics obtained by force measurement using a precision scale

Grahic Jump Location
Fig. 4

Phase-averaged centerline velocity cycles: (a) proposed SJ at f = 65 Hz and (b) reference SJ at f = 72 Hz

Grahic Jump Location
Fig. 5

Cross-stream distributions of time-averaged velocity: (a) proposed SJ at f = 65 Hz and (b) reference SJ at f = 72 Hz

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In