0
Research Papers: Flows in Complex Systems

Effects of Chemical Composition on the Electromechanical Properties of Microfluidically Synthesized Hydrogel Beads

[+] Author and Article Information
Kaushik Kudtarkar

Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623-5604
e-mail: kak6039@rit.edu

Michael Johnson

Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623-5604
e-mail: mxj5897@rit.edu

Patricial Iglesias

Mem. ASME
Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623-5604
e-mail: pxieme@rit.edu

Thomas W. Smith

School of Chemistry and Materials Science,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623-5604
e-mail: twssch@rit.edu

Michael J. Schertzer

Mem. ASME
Mechanical Engineering,
Rochester Institute of Technology,
76 Lomb Memorial Drive,
Rochester, NY 14623-5604
e-mail: mjseme@rit.edu

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received November 21, 2017; final manuscript received April 9, 2018; published online May 7, 2018. Assoc. Editor: Shizhi Qian.

J. Fluids Eng 140(10), 101103 (May 07, 2018) (6 pages) Paper No: FE-17-1747; doi: 10.1115/1.4039946 History: Received November 21, 2017; Revised April 09, 2018

This investigation demonstrates microfluidic synthesis of monodisperse hydrogel beads with controllable electromechanical properties. Hydrogel beads were synthesized using aqueous monomer solutions containing difunctional macromer, ionic liquid monomer, and photoinitiator. Electromechanical properties of these beads were measured at compression ratios up to 20% to examine their potential use in vibrational energy harvesters. Bead stiffness decreased dramatically as water content increased from 19% to 60%. As water content and compression ratio increased, electrical permittivity of beads increased, while resistivity decreased. As ionic liquid monomer concentration increased from 0% to 4%, relative permittivity increased by 30–45% and resistivity decreased by 70–80%.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chu, S. , and Majumdar, A. , 2012, “Opportunities and Challenges for a Sustainable Energy Future,” Nature, 488(7411), pp. 294–303. [CrossRef] [PubMed]
Najafi, M. R. , Zwiers, F. W. , and Gillett, N. P. , 2015, “Attribution of Arctic Temperature Change to Greenhouse-Gas and Aerosol Influences,” Nat. Clim. Change, 5(3), pp. 246–249. [CrossRef]
Solomon, S. , Plattner, G.-K. , Knutti, R. , and Friedlingstein, P. , 2009, “Irreversible Climate Change Due to Carbon Dioxide Emissions,” Proc. Natl. Acad. Sci. U. S. A, 106(6), pp. 1704–1709. [CrossRef] [PubMed]
Silva, R. A. , West, J. J. , Zhang, Y. , Anenberg, S. C. , Lamarque, J.-F. , Shindell, D. T. , Collins, W. J. , Dalsoren, S. , Faluvegi, G. , Folberth, G. , Horowitz, L. W. , Nagashima, T. , Naik, V. , Rumbold, S. , Skeie, R. , Sudo, K. , Takemura, T. , Bergmann, D. , Cameron-Smith, P. , Cionni, I. , Doherty, R. M. , Eyring, V. , Josse, B. , MacKenzie, I. A. , Plummer, D. , Righi, M. , Stevenson, D. S. , Strode, S. , Szopa, S. , and Zeng, G. , 2013, “Global Premature Mortality Due to Anthropogenic Outdoor Air Pollution and the Contribution of Past Climate Change,” Environ. Res. Lett., 8(3), p. 034005. [CrossRef]
Bogue, R. , 2015, “Energy Harvesting: A Review of Recent Developments,” Sens. Rev., 31(1), pp. 1–5. [CrossRef]
Verbelen, Y. , Braeken, A. , and Touhafi, A. , 2014, “Towards a Complementary Balanced Energy Harvesting Solution for Low Power Embedded Systems,” Microsyst. Technol., 20(4–5), pp. 1007–1021. [CrossRef]
Gorlatova, M. , Sarik, J. , Grebla, G. , Cong, M. , Kymissis, I. , and Zussman, G. , 2015, “Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things,” IEEE J. Sel. Areas Commun., 33(8), pp. 1624–1639. [CrossRef]
Gupta, R. K. , Shi, Q. , Dhakar, L. , Wang, T. , Heng, C. H. , and Lee, C. , 2017, “Broadband Energy Harvester Using Non-Linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism,” Sci. Rep., 7, pp. 1–13. [CrossRef] [PubMed]
Jabbari, M. , Ghayour, M. , and Mirdamadi, H. R. , 2017, “Energy Harvesting of a Multilayer Piezoelectric Beam in Resonance and Off-Resonance Cases,” ASME J. Eng. Mater. Technol., 139(3), p. 031008.
Wang, Y. , and Sun, L. Z. , 2017, “Synthesis and Characterization of Dielectric Elastomer Nanocomposites Filled With Multiwalled Carbon Nanotubes,” ASME J. Eng. Mater. Technol., 139(2), p. 021018. [CrossRef]
Cooley, C. G. , and Chai, T. , 2017, “Energy Harvesting From the Vibrations of Rotating Systems,” ASME J. Vib. Acoust., 140(2), p. 021010.
Fang, Z.-W. , Zhang, Y.-W. , Li, X. , Ding, H. , and Chen, L.-Q. , 2017, “Complexification-Averaging Analysis on a Giant Magnetostrictive Harvester Integrated With a Nonlinear Energy Sink,” ASME J. Vib. Acoust., 140(2), p. 021009.
Chen, S. , Peng, Y. , Wu, Q. , Chang, A. , Qu, A. , Shen, J. , Xie, J. , Farooqi, Z. H. , and Wu, W. , 2016, “Synthesis and Characterization of Responsive Poly(Anionic Liquid) Microgels,” Polym. Chem., 7(34), pp. 5463–5473. [CrossRef]
Krupenkin, T. , and Taylor, J. A. , 2011, “Reverse Electrowetting as a New Approach to High-Power Energy Harvesting,” Nat. Commun., 2, p. 448. [CrossRef] [PubMed]
Yang, Z. , Halvorsen, E. , and Dong, T. , 2014, “Electrostatic Energy Harvester Employing Conductive Droplet and Thin-Film Electret,” J. Microelectromech. Syst., 23(2), pp. 315–323. [CrossRef]
Schertzer, M. J. , 2017, “Analytical Model of Droplet Based Electrostatic Energy Harvester Performance,” Microsyst. Technol., 23(8), pp. 3141–3148. [CrossRef]
Yang, Z. , Halvorsen, E. , and Dong, T. , 2013, “Capacitance Variation in Electrostatic Energy Harvester With Conductive Droplet Moving on Electret Film,” J. Phys. Conf. Ser., 476, p. 012094. [CrossRef]
Miljkovic, N. , Preston, D. J. , Enright, R. , and Wang, E. N. , 2014, “Jumping-Droplet Electrostatic Energy Harvesting,” Appl. Phys. Lett., 105(1), p. 013111. [CrossRef]
Kong, W. , Cao, P. , He, X. , Yu, L. , Ma, X. , He, Y. , Lu, L. , Zhang, X. , and Deng, Y. , 2014, “Ionic Liquid Based Vibrational Energy Harvester by Periodically Squeezing the Liquid Bridge,” RSC Adv., 4(37), p. 19356. [CrossRef]
Helseth, L. E. , and Guo, X. D. , 2015, “Contact Electrification and Energy Harvesting Using Periodically Contacted and Squeezed Water Droplets,” Langmuir, 31(10), pp. 3269–3276. [CrossRef] [PubMed]
Hsu, T. H. , Manakasettharn, S. , Taylor, J. A. , and Krupenkin, T. , 2015, “Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting,” Sci. Rep., 5(1), p. 16537.
Yamada, S. , Mitsuya, H. , and Fujita, H. , 2014, “Vibrational Energy Harvester Based on Electrical Double Layer of Ionic Liquid,” J. Phys. Conf. Ser., 557(1), p. 012013.
Jiang, Q. , Barkan, H. , Menner, A. , and Bismarck, A. , 2017, “Micropatterned, Macroporous Polymer Springs for Capacitive Energy Harvesters,” Polymer, 126, pp. 419–424. [CrossRef]
Helseth, L. E. , and Guo, X. D. , 2016, “Hydrophobic Polymer Covered by a Grating Electrode for Converting the Mechanical Energy of Water Droplets Into Electrical Energy,” Smart Mater. Struct., 25(4), p. 045007. [CrossRef]
Lin, T. , Ramadurgam, S. , and Yang, C. , 2017, “Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices,” Nano Lett., 17(4), pp. 2118–2125. [CrossRef] [PubMed]
Alan Wei, Z. , and Charlie Zheng, Z. , 2017, “Fluid–Structure Interaction Simulation on Energy Harvesting From Vortical Flows by a Passive Heaving Foil,” ASME J. Fluids Eng., 140(1), p. 011105.
Naccache, G. , and Paraschivoiu, M. , 2017, “Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics,” ASME J. Fluids Eng., 139(12), p. 121105.
Shih, S. C. , Barbulovic-Nad, I. , Yang, X. , Fobel, R. , and Wheeler, A. R. , 2013, “Digital Microfluidics With Impedance Sensing for Integrated Cell Culture and Analysis,” Biosens. Bioelectron., 42, pp. 314–320.
Reeves, C. , Garvey, S. , Menezes, P. , Dietz, M. , Jen, T.-C. , and Lovell, M. , 2012, “Tribological Performance of Environmentally Friendly Ionic Liquid Lubricants,” ASME Paper No. IJTC2012-61180.
Jiménez, A. E. , Bermúdez, M. D. , and Iglesias, P. , 2009, “Lubrication of Inconel 600 With Ionic Liquids at High Temperature,” Tribol. Int., 42(11–12), pp. 1744–1751. [CrossRef]
Yao, C. , Li, T. , Twu, P. , Pitner, W. R. , and Anderson, J. L. , 2011, “Selective Extraction of Emerging Contaminants From Water Samples by Dispersive Liquid-Liquid Microextraction Using Functionalized Ionic Liquids,” J. Chromatogr. A, 1218(12), pp. 1556–1566. [CrossRef] [PubMed]
Dharaskar, S. A. , Wasewar, K. L. , Varma, M. N. , and Shende, D. Z. , 2013, “Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids,” J. Energy, 2013, p. 581723 .
Jacquemin, J. , Feder-Kubis, J. , Zorębski, M. , Grzybowska, K. , Chorążewski, M. , Hensel-Bielówka, S. , Zorębski, E. , Paluch, M. , and Dzida, M. , 2014, “Structure and Thermal Properties of Salicylate-Based-Protic Ionic Liquids as New Heat Storage Media. COSMO-RS Structure Characterization and Modeling of Heat Capacities,” Phys. Chem. Chem. Phys., 16(8), pp. 3549–3557. [CrossRef] [PubMed]
Du, Z. , Li, Z. , and Deng, Y. , 2005, “Synthesis and Characterization of Sulfonyl—Functionalized Ionic Liquids,” Synth. Commun., 35(10), pp. 1343–1349. [CrossRef]
Jiménez, A. E. , Bermúdez, M. D. , Iglesias, P. , Carrión, F. J. , and Martínez-Nicolás, G. , 2006, “1-N-Alkyl-3-Methylimidazolium Ionic Liquids as Neat Lubricants and Lubricant Additives in Steel-Aluminium Contacts,” Wear, 260(7–8), pp. 766–782. [CrossRef]
Song, Z. , Liang, Y. , Fan, M. , Zhou, F. , and Liu, W. , 2014, “Ionic Liquids From Amino Acids: Fully Green Fluid Lubricants for Various Surface Contacts,” RSC Adv., 4(37), pp. 19396–19402. [CrossRef]
Matczak, L. , Johanning, C. , Gil, E. , Smith, T. W. , Schertzer, M. J. , and Iglesias Victoria, P. , 2018, “Effect of Cation Nature on the Lubricating and Physicochemical Properties of Three Ionic Liquids,” Tribol. Int., 124(22–23), pp. 23–33. [CrossRef]
Zhao, J. , Shen, X. , Yan, F. , Qiu, L. , Lee, S. , and Sun, B. , 2011, “Solvent-Free Ionic Liquid/Poly(Ionic Liquid) Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells,” J. Mater. Chem., 21(20), pp. 7326–7330. [CrossRef]
Su’ait, M. S. , Rahman, M. Y. A. , and Ahmad, A. , 2015, “Review on Polymer Electrolyte in Dye-Sensitized Solar Cells (DSSCs),” Sol. Energy, 115, pp. 452–470. [CrossRef]
Sahiner, N. , and Yasar, A. O. , 2016, “Imidazolium Based Polymeric Ionic Liquid Microgels as an Alternative Catalyst to Metal Catalysts for H2 Generation From Methanolysis of NaBH4,” Fuel Process. Technol., 152, pp. 316–324. [CrossRef]
Qian, W. , Texter, J. , and Yan, F. , 2017, “Frontiers in Poly(Ionic Liquid)s: Syntheses and Applications,” Chem. Soc. Rev., 46(4), pp. 1124–1159. [CrossRef] [PubMed]
Rahman, M. T. , Barikbin, Z. , Badruddoza, A. Z. M. , Doyle, P. S. , and Khan, S. A. , 2013, “Monodisperse Polymeric Ionic Liquid Microgel Beads With Multiple Chemically Switchable Functionalities,” Langmuir, 29(30), pp. 9535–9543. [CrossRef] [PubMed]
Tiihonen, J. , Markkanen, I. , Laatikainen, M. , and Paatero, E. , 2001, “Elasticity of Ion-Exchange Resin Beads in Solvent Mixtures,” J. Appl. Polym. Sci., 82(5), pp. 1256–1264. [CrossRef]
Tan, J. , Xu, J. H. , Li, S. W. , and Luo, G. S. , 2008, “Drop Dispenser in a Cross-Junction Microfluidic Device: Scaling and Mechanism of Break-Up,” Chem. Eng. J., 136(2–3), pp. 306–311. [CrossRef]
Ngo, I.-L. , Woo Joo, S. , and Byon, C. , 2016, “Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-Junction,” ASME J. Fluids Eng., 138(5), p. 051202.

Figures

Grahic Jump Location
Fig. 1

Images of monodispersed droplets (exploded) in the facility for hydrogel bead synthesis

Grahic Jump Location
Fig. 2

Sketches of facilities used to measure (a) stiffness and (b) electrical properties of polymer gel beads

Grahic Jump Location
Fig. 3

Aspect ratio of dispersed droplets in the microreactor (open circles) and polymer gel beads (closed triangles) as a function of the ratio of oil (Qc) to monomer (Qd) flow rates. Predicted aspect ratios from Eq. (1) with k values of 1.59 (solid line) and 0.55 (dashed line). Error bars are smaller than the marker size for all data points.

Grahic Jump Location
Fig. 4

Bead stiffness as a function of water concentration for polymer gel beads (open circles) and polyIL beads (closed circles). Error bars are smaller than the marker size for multiple data points.

Grahic Jump Location
Fig. 5

Effective relative permittivity as a function of compression ratio for (a) nonIL gel with water concentrations of 19% (open diamond), 37% (open circle), 60% (open triangle), and 75% (open square), and (b) polyIL beads with IL concentrations of 1% (closed square), 2% (closed diamond), and 4% (closed triangle). Error bars are smaller than the marker size for all data points.

Grahic Jump Location
Fig. 6

Effective resistivity as a function of compression ratio for (a) nonIL gel with water concentrations of 19% (open diamond), 37% (open circle), 60% (open triangle), and 75% (open square), and (b) polyIL beads with IL concentrations of 1% (closed square), 2% (closed diamond), and 4% (closed triangle). Error bars are smaller than the marker size for all data points.

Grahic Jump Location
Fig. 7

Effective resistivity of polyIL beads as a function of IL concentration at compression ratios of 5% (closed square) and 20% (open square). Error bars are smaller than the marker size for all data points.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In