0
Research Papers: Flows in Complex Systems

Numerical Simulation of Cloud Cavitation in Hydrofoil and Orifice Flows With Analysis of Viscous and Nonviscous Separation

[+] Author and Article Information
Phillip Limbach

Chair of Hydraulic Fluid Machinery,
Ruhr Universität Bochum,
Universitätsstr. 150,
Bochum 44801, Germany
e-mail: phillip.limbach@ruhr-uni-bochum.de

Karoline Kowalski

Chair of Process Technology,
Ruhr Universität Bochum,
Universitätsstr. 150,
Bochum 44801, Germany
e-mail: kowalski@vtp.ruhr-uni-bochum.de

Jeanette Hussong

Chair of Hydraulic Fluid Machinery,
Ruhr Universität Bochum,
Universitätsstr. 150,
Bochum 44801, Germany
e-mail: jeanette.hussong@ruhr-uni-bochum.de

Romuald Skoda

Chair of Hydraulic Fluid Machinery,
Ruhr Universität Bochum,
Universitätsstr. 150,
Bochum 44801, Germany
e-mail: romuald.skoda@ruhr-uni-bochum.de

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 22, 2017; final manuscript received April 14, 2018; published online May 18, 2018. Assoc. Editor: Matevz Dular.

J. Fluids Eng 140(11), 111102 (May 18, 2018) (13 pages) Paper No: FE-17-1823; doi: 10.1115/1.4040069 History: Received December 22, 2017; Revised April 14, 2018

Three-dimensional (3D) numerical flow simulations with a mass transfer cavitation model are performed to analyze cloud cavitation at two different flow configurations, i.e., hydrofoil and orifice flows, focusing on the turbulence and cavitation model interaction, including a mixture eddy viscosity reduction and cavitation model parameter modification. For the cavitating flow around the hydrofoil with circular leading edge, a good agreement to the measured shedding frequencies as well as local cavitation structures is obtained over a wide range of operation points, even with a moderate boundary layer resolution, i.e., utilizing wall functions (WF), which are found to be adequate to capture the re-entrant jet reasonably in the absence of viscous separation. Simulations of the orifice flow, that exhibit significant viscous single-phase (SP) flow separation, are analyzed concerning the prediction of choking and cloud cavitation. A low-Reynolds number turbulence approach in the orifice wall vicinity is suggested to capture equally the mass flow rate, flow separation, and cloud shedding with satisfying accuracy in comparison to in-house measurements. Local cavitation structures are analyzed in a time-averaged manner for both cases, revealing a reasonable prediction of the spatial extent of the cavitation zones. However, different cavitation model parameters are utilized at hydrofoil and orifice for best agreement with measurement data.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zwart, P. J. , Gerber, A. G. , and Belamri, T. , 2004, “ A Two-Phase Flow Model for Predicting Cavitation Dynamics,” International Conference on Multiphase Flow (ICMF), Yokohama, Japan, May 30–June 4, Paper No. 152.
Frobenius, M. , Schilling, R. , Friedrichs, J. , and Kosyna, G. , 2002, “ Numerical and Experimental Investigations of the Cavitating Flow in a Centrifugal Pump Impeller,” ASME Paper No. FEDSM2002-31006.
Frobenius, M. , Schilling, R. , Bachert, R. , Stoffel, B. , and Ludwig, G. , 2003, “ Three-Dimensional Unsteady Cavitation Effects on a Single Hydrofoil and in a Radial Pump—Measurements and Numerical Simulations—Part 2: Numerical Simulation,” Fifth International Symposium on Cavitation, Osaka, Japan, Nov. 1–5, Paper No. Cav03-GS-9-005.
Dular, M. , Bachert, R. , and Širok, B. , 2004, “ Relationship Between Cavitation Structures and Cavitation Damage,” Wear, 257(11), pp. 1176–1184. [CrossRef]
Pelz, P. , Keil, T. , and Groß, T. F. , 2017, “ The Transition From Sheet to Cloud Cavitation,” J. Fluid Mech., 817, pp. 439–454. [CrossRef]
Dular, M. , Bachert, R. , Stoffel, B. , and Širok, B. , 2005, “ Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil,” Eur. J. Mech.—B/Fluids, 24(4), pp. 522–538. [CrossRef]
Li, D. Q. , Grekula, M. , and Lindell, P. , 2009, “ A Modified SST k-ω Turbulence Model to Predict the Steady and Unsteady Sheet Cavitation on 2D and 3D Hydrofoils,” Seventh International Symposium on Cavitation, Ann Arbor, MI, Aug. 16–20, Paper No. 107.
Li, Z. , Pourquie, M. , and Terwisga, T. J. C. , 2010, “ A Numerical Study of Steady and Unsteady Cavitation on a 2D Hydrofoil,” J. Hydrodyn., Ser. B, 22(5), pp. 770–777. [CrossRef]
Huang, B. , Ducoin, A. , and Young, Y. , 2012, “ Evaluation of Cavitation Models for Prediction of Transient Cavitating Flows Around a Pitching Hydrofoil,” Eighth International Symposium on Cavitation, Singapore, Aug. 14–16, pp. 601–608.
Ducoin, A. , Huang, B. , and Young, Y. , 2012, “ Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil,” Int. J. Rotating Mach., 2012, p. 215678.
Huang, B. , Young, Y. , Wang, G. , and Shyy, W. , 2013, “ Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation,” ASME J. Fluids Eng., 135(7), p. 071301. [CrossRef]
Huang, B. , Ducoin, A. , and Young, Y. , 2013, “ Physical and Numerical Investigation of Cavitating Flows Around a Pitching Hydrofoil,” Phys. Fluids, 25(10), p. 102109. [CrossRef]
Tran, T. , Nennemann, B. , Vu, T. , and Guibault, F. , 2014, “ Numerical Simulation of Unsteady Sheet/Cloud Cavitation,” IOP Conf. Ser.: Earth Environ. Sci., 22(5), p. 052012. [CrossRef]
Frikha, S. , Coutier-Delgosha, O. , and Astolfi, J. A. , 2008, “ Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section,” Int. J. Rotating Mach., 2008, p. 146234. [CrossRef]
Morgut, M. , Nobile, E. , and Biluš, I. , 2011, “ Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil,” Int. J. Multiphase Flow, 37(6), pp. 620–626. [CrossRef]
Salvadori, S. , Cappelletti, A. , and Martelli, F. , 2012, “ Numerical Prediction of Cavitation in Pumps,” 15th International Conference on Fluid Flow Technologies, Budapest, Hungary, Sept. 4–7. https://www.researchgate.net/publication/259073627_Numerical_Prediction_of_Cavitation_in_Pumps
Coutier-Delgosha, O. , Fortes-Patella, R. , and Reboud, J. L. , 2003, “ Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation,” ASME J. Fluids Eng., 125(1), pp. 38–45. [CrossRef]
Reboud, J. L. , Stutz, B. , and Coutier, O. , 1998, “ Two-Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects,” Third International Symposium on Cavitation, Grenoble, France, Apr. 7–10. https://www.researchgate.net/publication/248179422_Two-phase_flow_structure_of_cavitation_Experiment_and_modeling_of_unsteady_effects
Biluš, I. , Morgut, M. , and Nobile, E. , 2013, “ Simulation of Sheet and Cloud Cavitation With Homogeneous Transport Models,” Int. J. Simul. Modell., 12(2), pp. 94–106. [CrossRef]
Jošt, D. , Škerlavaj, A. , Morgut, M. , and Nobile, E. , 2017, “ Numerical Prediction of Cavitating Vortex Rope in a Draft Tube of a Francis Turbine With Standard and Calibrated Cavitation Model,” J. Phys.: Conf. Ser., 813(1), p. 012045. [CrossRef]
Chatagny, L. , and Berten, S. , 2016, “ Challenges and Open Questions in Cavitation Simulations for Centrifugal Pump Applications,” Third International Rotating Equipment Conference, Düsseldorf, Germany, Sept. 14–15, pp. 765–775.
Salvadori, S. , Cappelletti, A. , Montomoli, F. , Nicchio, A. , and Martelli, F. , 2015, “ Experimental and Numerical Evaluation of the NPSHR Curve of an Industrial Centrifugal Pump,” 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Madrid, Spain, Mar. 23–27, Paper No. ETC2015-011. https://www.researchgate.net/publication/272443365_Experimental_and_Numerical_Evaluation_of_the_NPSHR_Curve_of_an_Industrial_Centrifugal_Pump
Limbach, P. , and Skoda, R. , 2017, “ Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness,” ASME J. Fluids Eng., 139(10), p. 101201. [CrossRef]
Limbach, P. , Kimoto, M. , Deimel, C. , and Skoda, R. , 2014, “ Numerical 3D Simulation of the Cavitating Flow in a Centrifugal Pump With Low Specific Speed and Evaluation of the Suction Head,” ASME Paper No. GT2014-26089.
Böhm, R. , 1998, “ Erfassung Und Hydrodynamische Beeinflussung Fortgeschrittener Kavitationszustände Und Ihrer Erosiven Aggressivität,” Ph.D. thesis, Technical University of Darmstadt, Darmstadt, Germany.
Hofmann, M. , Lohrberg, H. , Ludwig, G. , Stoffel, B. , and Reboud, J. L. , 1999, “ Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 1: Visualisation,” ASME Paper No. FEDSM99-6755.
Reboud, J. L. , Fortes-Patella, R. , Hofmann, M. , Lohrberg, H. , and Ludwig, G. , 1999, “ Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 2: Dynamic Pressures,” ASME Paper No. FEDSM99-7259.
Bachert, B. , Dular, M. , Baumgarten, S. , Ludwig, G. , and Stoffel, B. , 2004, “ Experimental Investigations concerning Erosive Aggressiveness of Cavitation at Different Test Configurations,” ASME Paper No. HT-FED2004-56597.
Dular, M. , and Coutier-Delgosha, O. , 2009, “ Numerical Modelling of Cavitation Erosion,” Int. J. Numer. Methods Fluids, 61(12), pp. 1388–1410. [CrossRef]
Rayleigh, L. , 1917, “ On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag., 34(200), pp. 94–98. [CrossRef]
Plesset, M. S. , and Prosperetti, A. , 1977, “ Bubble Dynamics and Cavitation,” Annu. Rev. Fluid Mech., 9(1), pp. 145–185. [CrossRef]
Brennen, C. E. , 2011, Hydrodynamics of Pumps, Cambridge University Press, New York. [CrossRef]
Bakir, F. , Rey, R. , Gerber, A. G. , Belamri, T. , and Hutchinson, B. , 2004, “ Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer,” Int. J. Rotating Mach., 10(1), pp. 15–25. [CrossRef]
Menter, F. R. , 1994, “ Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications,” AIAA J., 32(8), pp. 1598–1605. [CrossRef]
Menter, F. R. , and Esch, T. , 2001, “ Elements of Industrial Heat Transfer Predictions,” 16th Brazilian Congress of Mechanical Engineering, Uberlandia, Brazil, Nov. 26–30, pp. 117–127.
Iben, U. , Morozov, A. , Winklhofer, E. , and Skoda, R. , 2011, “ Optical Investigations of Cavitating Flow Phenomena in Micro Channels Using a Nano Second Resolution,” Third International Cavitation Forum (WIMRC), Warwick, UK, July 4–6, pp. 1–7. https://www.researchgate.net/publication/265092308_Optical_investigations_of_cavitating_flow_phenomena_in_micro_channels_using_a_nano_second_resolution
Iben, U. , Morozov, A. , Winklhofer, E. , and Wolf, F. , 2011, “ Laser-Pulse Interferometry Applied to High-Pressure Fluid Flow in Micro Channels,” Exp. Fluids, 50(3), pp. 597–611. [CrossRef]
Tomov, P. , Khelladi, S. , Ravelet, F. , Sarraf, C. , Bakir, F. , and Vertenoeuil, P. , 2016, “ Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle,” Exp. Therm. Fluid Sci., 70, pp. 85–95. [CrossRef]
Dular, M. , Bachert, R. , Schaad, C. , and Stoffel, B. , 2007, “ Investigation of a Re-Entrant Jet Reflection at an Inclined Cavity Closure Line,” Eur. J. Mech. B/Fluids, 26(5), pp. 688–705. [CrossRef]
Callenaere, M. , Franc, J. , Michel, J. , and Riondet, M. , 2001, “ The Cavitation Instability Induced by the Development of a Re-Entrant Jet,” J. Fluid Mech., 444, pp. 223–256. [CrossRef]
Franc, J. , 2001, “ Partial Cavity Instabilities and Re-Entrant Jet,” Fourth International Symposium on Cavitation, Pasadena, CA, June 20–23, Paper No. CAV2001:lecture.002 http://caltechconf.library.caltech.edu/50/.
Blackman, R. B. , and Turkey, J. W. , 1958, “ The Measurement of Power Spectra, From the Point of View of Communications Engineering,” Bell. Syst. Tech. J., 37(1), pp. 185–282. [CrossRef]
Abernethy, R. B. , Benedict, R. P. , and Dowdell, R. B. , 1985, “ ASME Measurement Uncertainty,” ASME J. Fluids Eng., 107(2), pp. 161–164. [CrossRef]
Kawanami, Y. , Kato, H. , and Yamaguchi, H. , 1998, “ Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil,” Third International Symposium on Cavitation, Grenoble, France, Apr. 7–10, pp. 191–196.
Franc, J. P. , and Michel, J. M. , 2004, Fundamentals of Cavitation (Fluid Mechanics and its Applications, Vol. 76), Kluwer Academic Publishers, Dordrecht, The Netherlands.
Kowalski, K. , Pollak, S. , and Hussong, J. , 2017, “ Experimental Investigation of Cavitation Induced Air Release,” EPJ Web Conf., 143, p. 02054.
Kowalski, K. , Pollak, S. , Skoda, R. , and Hussong, J. , 2017, “ Experimental Study on Cavitation-Induced Air Release in Orifice Flows,” ASME J. Fluids Eng., 140(6), p. 061201.
Dular, M. , and Petkovšek, M. , 2015, “ On the Mechanisms of Cavitation Erosion—Coupling High Speed Videos to Damage Patterns,” Exp. Therm. Fluid Sci., 68, pp. 359–370. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Computational domain, (b) grid CLE_G01WF, and ((c)–(f)) details of the grids and velocity distribution at the leading edge

Grahic Jump Location
Fig. 6

Predicted velocity distributions in x-direction at five vertical lines (Re = 1.3 × 106 and σ = 2.0), for (a) CLE_G03WF_n10MODCLE and (b) CLE_G03 LR_n10MODCLE in comparison to measured data of Ref. [29]

Grahic Jump Location
Fig. 4

Predicted shedding frequencies at the CLE-profile for different Re and σ in comparison to measured data of Ref. [27]

Grahic Jump Location
Fig. 8

Sketch of (a) the experimental setup and (b) the orifice including geometric dimensions; Grid details of (c) O1_G02WF and O1_G02 LR and (d) O360_G02 LR in the orifice throat area

Grahic Jump Location
Fig. 7

Side and top view of the cavitation probability, Pcav. Comparison between experiments [28] (colored images are converted to grayscale) and simulation results CLE_G03WF_n10MODCLE.

Grahic Jump Location
Fig. 2

Shedding frequency evaluation procedure, illustrated for Re = 1.6 × 106, σ = 2.7: (a) exemplary temporal pressure signal of pressure probe 2, ppp,2, (b) integral void fraction, αv,Int, (c) FFT results of all pressure probe signals, (d) FFT results of the void fraction, αv,Int, and (e) distribution of the shedding frequencies of the void fraction, αv,Int, including 95.5% confidence interval, Uf¯α, and standard deviation, sf¯α

Grahic Jump Location
Fig. 3

Time sequence of one exemplary shedding cycle for Re = 1.6 × 106 and σ = 2.7, illustrated by isosurfaces with αv = 0.1

Grahic Jump Location
Fig. 5

Cp distributions at the CLE-profile for (a) SP flow and ((b),(c)) cavitating flow (Re = 1.6 × 106 and σ = 2.7), in comparison to measured data of Ref. [27]

Grahic Jump Location
Fig. 11

(a) Exemplary shadowgraphy images for a typical shedding cycle at arbitrary instants and Δp = 4.5 bar (left) andexemplary snapshots of the cavitation structures of O360_G02 LR_n3MODO, illustrated by isosurfaces with αv = 0.1 (right) and (b) cavitation probability, Pcav. The flow direction is from left to right.

Grahic Jump Location
Fig. 12

Cavitation intensity, Icav, normalized to the value of Icav at Δp = 4.5 bar

Grahic Jump Location
Fig. 9

Mass flow rate curve for different grid resolutions and wall treatment methods using the 1 deg segment and n1STD model and measured in-house data

Grahic Jump Location
Fig. 10

Mass flow rate curve for selected parameter sets n10MODCLE, n3STD, n3MODO, and measured in-house data

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In