0
Research Papers: Techniques and Procedures

Experimental Measurement of Vortex Ring Screen Interaction Using Flow Visualization and Molecular Tagging Velocimetry

[+] Author and Article Information
John T. Hrynuk

Vehicle Technologies Directorate,
Army Research Lab,
4603 Flare Loop,
Aberdeen Proving Ground, MD 21005
e-mail: john.t.hrynuk.civ@mail.mil

Colin M. Stutz

Department of Mechanical and
Aeronautical Engineering,
Clarkson University,
8 Clarkson Avenue Box 5725,
Potsdam, NY 13699
e-mail: stutzcm@clarkson.edu

Doug G. Bohl

Department of Mechanical and
Aeronautical Engineering,
Clarkson University,
8 Clarkson Avenue Box 5725,
Potsdam, NY 13699
e-mail: dbohl@clarkson.edu

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received January 4, 2017; final manuscript received April 3, 2018; published online May 28, 2018. Assoc. Editor: Samuel Paolucci. This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government's contributions.

J. Fluids Eng 140(11), 111401 (May 28, 2018) (11 pages) Paper No: FE-17-1011; doi: 10.1115/1.4040215 History: Received January 04, 2017; Revised April 03, 2018

The interaction of vortex rings with thin wire mesh screens is investigated using laser-induced fluorescence (LIF) and molecular tagging velocimetry (MTV). The existence of vortex shedding from individual wires of the porous screens, suggested by prior works, is shown and compared to flow visualization results. A range of interaction Reynolds numbers and screen porosities are studied to determine the conditions affecting the interaction. Transmitted vortex (TV) ring formation is shown to be a function of vortex shedding and the shedding Reynolds number, but not a function of porosity. Screen porosity is shown to affect the TV convective speed but did not impact the formation behaviors. Three major flow regimes existed for the interaction: TV formation with no vortex shedding, TV formation with visible vortex shedding, and no downstream formation with strong shed vortices.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mason, M. S. , Wood, G. S. , and Fletcher, D. F. , 2009, “ Numerical Simulation of Downburst Winds,” J. Wind Eng. Ind. Aerodyn., 97(11–12), pp. 523–539. [CrossRef]
Pasipoularides, A. , Shu, M. , Shah, A. , Womak, M. S. , and Glower, D. D. , 2002, “ Diastolic Right Ventricular Filling Vortex in Normal and Volume Overload States,” Am. J. Physiol., Heart Circ. Physiol., 284(4), pp. H1064–H1072. [CrossRef]
Krueger, P. S. , and Gharib, M. , 2003, “ The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet,” Phys. Fluids, 15(5), pp. 1271–1281. [CrossRef]
Dabiri, J. O. , Colin, S. P. , Katija, K. , and Costello, J. H. , 2010, “ A Wake-Based Correlate of Swimming Performance and Foraging Behavior in Seven Co-Occurring Jellyfish Species,” J. Exp. Biol., 213(8), pp. 1217–1225. [CrossRef] [PubMed]
Smith, B. L. , and Glezer, A. , 1998, “ The Formation and Evolution of Synthetic Jets,” Phys. Fluids, 10(9), pp. 2281–2297. [CrossRef]
Leishman, J. G. , Bhagwat, M. J. , and Bagai, A. , 2002, “ Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes,” J. Aircr., 39(5), pp. 759–775. [CrossRef]
Weigand, A. , and Gharib, M. , 1995, “ Turbulent Vortex Ring/Free Surface Interaction,” ASME J. Fluids Eng., 117(3), pp. 374–381. [CrossRef]
Chahine, G. L. , and Genoux, P. F. , 1983, “ Collapse of a Cavitating Vortex Ring,” ASME J. Fluids Eng., 105(4), pp. 400–405. [CrossRef]
Karpatne, A. , Sirohi, J. , Mula, S. , and Tinney, C. , 2014, “ Vortex Ring Model of Tip Vortex Aperiodicity in a Hovering Helicopter Rotor,” ASME J. Fluids Eng., 136(7), p. 071104. [CrossRef]
Lamb, H. , 1932, Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, UK.
Olcay, A. B. , and Krueger, P. S. , 2008, “ Measurement of Ambient Fluid Entrainment During Laminar Vortex Ring Formation,” Exp. Fluids, 44(2), pp. 235–247. [CrossRef]
Weigand, A. , and Gharib, M. , 1997, “ On the Evolution of Laminar Vortex Rings,” Exp. Fluids, 22(6), pp. 447–457. [CrossRef]
Gharib, M. , Rambod, E. , and Shariff, K. , 1998, “ A Universal Time Scale for Vortex Ring Formation,” J. Fluid Mech., 360, pp. 121–140. [CrossRef]
Nitsche, M. , 1996, “ Scaling Properties of Vortex Ring Formation at a Circular Tube Opening,” Phys. Fluids, 8(7), pp. 1848–1855. [CrossRef]
Shusser, M. , Rosenfeld, M. , Dabiri, J. O. , and Gharib, M. , 2006, “ Effect of Time-Dependent Piston Velocity Program on Vortex Ring Formation in a Piston/Cylinder Arrangement,” Phys. Fluids, 18(3), p. 033601. [CrossRef]
Pullin, D. I. , 1979, “ Vortex Ring Formation at Tube and Orifice Openings,” Phys. Fluids, 22(3), pp. 401–403. [CrossRef]
Krueger, P. S. , 2005, “ An Over-Pressure Correction to the Slug Model for Vortex Ring Circulation,” J. Fluid Mech., 545, pp. 427–443. [CrossRef]
Walker, J. D. A. , Smith, C. R. , Cerra, A. W. , and Doligaski, T. L. , 1987, “ The Impact of a Vortex Ring on a Wall,” J. Fluid Mech., 181, pp. 99–140. [CrossRef]
Chu, C. C. , Wang, C. T. , and Chang, C. C. , 1995, “ A Vortex Ring Impinging on a Solid Plane Surface—Vortex Structure and Surface Force,” Phys. Fluids, 7(6), pp. 1391–1401. [CrossRef]
Gendrich, C. P. , Bohl, D. G. , and Koochesfahani, M. M. , 1997, “ Whole-Field Measurements of Unsteady Separation in a Vortex Ring/Wall Interaction,” AIAA Paper No. AIAA 97-1780.
Naguib, A. M. , and Koochesfahani, M. M. , 2004, “ On Wall-Pressure Sources Associated With the Unsteady Separation in a Vortex-Ring/Wall Interaction,” Phys. Fluids, 16(7), pp. 2613–2622. [CrossRef]
Adhikari, D. , and Lim, T. T. , 2009, “ The Impact of a Vortex Ring on a Porous Screen,” Fluid Dyn. Resour., 41(5), p. 051404. [CrossRef]
Naaktgenboren, C. , 2007, “ Interaction of Pressure and Momentum Driven Flows With Thin Porous Media: Experiments and Modeling,” Ph.D. dissertation, Southern Methodist University, University Park, TX.
Naaktgenboren, C. , Krueger, P. S. , and Lage, J. L. , 2012, “ Interaction of a Laminar Vortex Ring With a Thin Permeable Screen,” J. Fluid Mech., 707, pp. 260–286. [CrossRef]
Hrynuk, J. T. , Van Luipen, J. , and Bohl, D. G. , 2012, “ Flow Visualization of a Vortex Ring Interaction With Porous Surfaces,” Phys. Fluids, 24(3), p. 037103. [CrossRef]
Cheng, M. , Lou, J. , and Lim, T. T. , 2014, “ A Numerical Study of a Vortex Ring Impacting a Permeable Wall,” Phys. Fluids, 26(10), p. 103602. [CrossRef]
Lim, T. T. , and Adhikari, D. , 2015, “ Vortex Rings and Jets,” Fluid Mechanics and Its Applications 111, Springer, Singapore.
Gendrich, C. P. , Koochesfahani, M. M. , and Nocera, D. G. , 1997, “ Molecular Tagging Velocimetry and Other Novel Applications of a New Phosphorescent Supramolecule,” Exp. Fluids, 23(5), pp. 361–372. [CrossRef]
Koochesfahani, M. M. , and Nocera, D. G. , 2007, “ Molecular Tagging Velocimetry,” Handbook of Experimental Fluid Dynamics, J. Foss , C. Tropea , and A. Yarin , eds., Springer-Verlag, New York.
Gendrich, C. P. , and Koochesfahani, M. M. , 1996, “ A Spatial Correlation Technique for Estimating Velocity Fields Using Molecular Tagging Velocimetry,” Exp. Fluids, 22(1), pp. 67–77. [CrossRef]
Cohn, R. K. , and Koochesfahani, M. M. , 2000, “ The Accuracy of Remapping Irregularly Spaced Velocity Data Onto a Regular Grid and the Computation of Vorticity,” Exp. Fluids, 29(Suppl. 1), pp. S61–S69. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Sample screens: (a) Dwire = 0.0178 cm, (b) Dwire = 0.104 cm, and (c) Dwire = 0.267 cm

Grahic Jump Location
Fig. 4

Free vortex progression (Z = 70 cm)

Grahic Jump Location
Fig. 5

(a) Vortex tracking for LIF and MTV results and (b) convective velocities using LIF positions

Grahic Jump Location
Fig. 1

(a) Experimental setup and (b) free vortex characterization

Grahic Jump Location
Fig. 2

(a) Undelayed MTV image t = t0, (b) delayed MTV image t = t0 + Δt, and (c) resulting displacement vector field

Grahic Jump Location
Fig. 6

Vortex interaction with screens: (a) Rei = 24, (b) Rei = 143, and (c) Rei = 373

Grahic Jump Location
Fig. 8

Laser-induced fluorescence and MTV vortex ring interaction for Rei = (a) 17, (b) 24, (c) 102, (d) 143, (e) 266, and (f) 373

Grahic Jump Location
Fig. 10

Vortex interactions and shedding behavior

Grahic Jump Location
Fig. 7

Vortex interaction MTV Results for: (a) Rei = 24, (b) Rei = 143, and (c) Rei = 373

Grahic Jump Location
Fig. 9

Vortex tracking and circulation: (a) Rei = 24, (b) Rei = 143, and (c) Rei = 373

Grahic Jump Location
Fig. 11

Vortex convection and porosity Red = 55

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In