Hullender,
D.
,
Woods,
R.
, and
Huang,
Y.-W.
, 2010, “
Single Phase Compressible Steady Flow in Pipes,” ASME J. Fluids Eng.,
132(1), p. 014502.

[CrossRef]
Cengel,
Y. A.
, and
Cimbala,
J. M.
, 2006, Fluid Mechanics: Fundamentals and Applications,
McGraw-Hill Higher Education,
New York.

Gnielinski,
V.
, 1976, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow,” Int. Chem. Eng.,
16(2), pp. 359–368.

Jouybari,
N. F.
,
Maerefat,
M.
,
Lundström,
T. S.
,
Nimvari,
M. E.
, and
Gholami,
Z.
, 2018, “
A General Macroscopic Model for Turbulent Flow in Porous Media,” ASME J. Fluids Eng.,
140(1), p. 011201.

[CrossRef]
Ravi,
R. K.
, and
Saini,
R. P.
, 2018, “
Nusselt Number and Friction Factor Correlations for Forced Convective Type Counter Flow Solar Air Heater Having Discrete Multi V Shaped and Staggered Rib Roughness on Both Sides of the Absorber Plate,” Appl. Therm. Eng.,
129, pp. 735–746.

[CrossRef]
White,
F. M.
, 2003, Fluid Mechanics,
McGraw-Hill,
Boston, MA.

Streeter,
V. L.
,
Wylie,
E. B.
, and
Bedford,
K. W.
, 1998, Fluid Mechanics,
WCB, McGraw-Hill, Boston, MA.

Holland,
F.
, and
Bragg,
R.
, 1995, Fluid Flow for Chemical Engineers,
Arnold,
London.

Besarati,
S. M.
,
Myers,
P. D.
,
Covey,
D. C.
, and
Jamali,
A.
, 2015, “
Modeling Friction Factor in Pipeline Flow Using a GMDH-Type Neural Network,” Cogent Eng.,
2(1), p. 1056929.

[CrossRef]
Churchill,
S. W.
, 1973, “
Empirical Expressions for the Shear Stress in Turbulent Flow in Commercial Pipe,” AlChE J.,
19(2), pp. 375–376.

[CrossRef]
Chen,
N. H.
, 1979, “
An Explicit Equation for Friction Factor in Pipe,” Ind. Eng. Chem. Fundam.,
18(3), pp. 296–297.

[CrossRef]
Round,
G.
, 1980, “
An Explicit Approximation for the Friction Factor‐Reynolds Number Relation for Rough and Smooth Pipes,” Can. J. Chem. Eng.,
58(1), pp. 122–123.

[CrossRef]
Zigrang,
D.
, and
Sylvester,
N.
, 1982, “
Explicit Approximations to the Solution of Colebrook's Friction Factor Equation,” AlChE J.,
28(3), pp. 514–515.

[CrossRef]
Haaland,
S.
, 1983, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow,” ASME J. Fluids Eng.,
105(1), pp. 89–90.

[CrossRef]
Silverberg,
P. M.
, and
Manadili,
G.
, 1997, “
Replace Implicit Equations with Signomial Functions,” Chem. Eng.,
104(8), p. 129.

Romeo,
E.
,
Royo,
C.
, and
Monzón,
A.
, 2002, “
Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes,” Chem. Eng. J.,
86(3), pp. 369–374.

[CrossRef]
Samadianfard,
S.
, 2012, “
Gene Expression Programming Analysis of Implicit Colebrook–White Equation in Turbulent Flow Friction Factor Calculation,” J. Pet. Sci. Eng.,
92–93, pp. 48–55.

[CrossRef]
Shaikh,
M. M.
, and
Wagan,
A. I.
, 2015, “
A New Explicit Approximation to Colebrook's Friction Factor in Rough Pipes Under Highly Turbulent Cases,” Int. J. Heat Mass Transfer,
88, pp. 538–543.

[CrossRef]
Ghanbari,
A.
,
Farshad,
F.
, and
Rieke,
H.
, 2011, “
Newly Developed Friction Factor Correlation for Pipe Flow and Flow Assurance,” J. Chem. Eng. Mater. Sci.,
2(6), pp. 83–86.

http://www.academicjournals.org/journal/JCEMS/article-abstract/43BC5B11677
Sonnad,
J. R.
, and
Goudar,
C. T.
, 2006, “
Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation,” J. Hydraul. Div.,
132(8), pp. 863–867.

[CrossRef]
Brkić,
D.
, 2011, “
An Explicit Approximation of Colebrook's Equation for Fluid Flow Friction Factor,” Pet. Sci. Technol.,
29(15), pp. 1596–1602.

[CrossRef]
Brkić,
D.
, 2011, “
New Explicit Correlations for Turbulent Flow Friction Factor,” Nucl. Eng. Des.,
241(9), pp. 4055–4059.

[CrossRef]
Avci,
A.
, and
Karagoz,
I.
, 2009, “
A Novel Explicit Equation for Friction Factor in Smooth and Rough Pipes,” ASME J. Fluids Eng.,
131(6), p. 061203.

[CrossRef]
Winning,
H. K.
, and
Coole,
T.
, 2013, “
Explicit Friction Factor Accuracy and Computational Efficiency for Turbulent Flow in Pipes,” Flow, Turbul. Combust.,
90(1), pp. 1–27.

[CrossRef]
Genić,
S.
,
Aranđelović,
I.
,
Kolendić,
P.
,
Jarić,
M.
,
Budimir,
N.
, and
Genić,
V.
, 2011, “
A Review of Explicit Approximations of Colebrook's Equation,” FME Trans.,
39(2), pp. 67–71.

http://scindeks.ceon.rs/article.aspx?artid=1451-20921102067G&lang=en
Coban,
M. T.
, 2012, “
Error Analysis of Non-Iterative Friction Factor Formulas Relative to Colebrook-White Equation for the Calculation of Pressure Drop in Pipes,” J. Nav. Sci. Eng.,
8(1), pp. 1–13.

Baqer,
N. M.
, 2015, “
Survey in Colebrook Equation Approximations,” Global J. Math.,
2(2), pp. 160–166.

Akaike,
H.
, 1974, “
A New Look at the Statistical Model Identification,” IEEE Transactions Automatic Control,
19(6), pp. 716–723.

[CrossRef]
Symonds,
M. R.
, and
Moussalli,
A.
, 2011, “
A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike's Information Criterion,” Behav. Ecol. Sociobiology,
65(1), pp. 13–21.

[CrossRef]
Brkić,
D.
, 2011, “
Review of Explicit Approximations to the Colebrook Relation for Flow Friction,” J. Pet. Sci. Eng.,
77(1), pp. 34–48.

[CrossRef]
Goudar,
C.
, and
Sonnad,
J.
, 2008, “
Comparison of the Iterative Approximations of the Colebrook-White Equation: Here's a Review of Other Formulas and a Mathematically Exact Formulation That is Valid Over the Entire Range of Re Values,” Hydrocarbon Process,
87(8), pp. 79–83.

Najafzadeh,
M.
,
Shiri,
J.
,
Sadeghi,
G.
, and
Ghaemi,,
A.
, 2018, “
Prediction of the Friction Factor in Pipes Using Model Tree,” ISH J. Hydraul. Eng.,
24(1), pp. 9–5.

[CrossRef]
Saeed,
K. M.
,
Mohammad Reza,
B.
, and
Mahdi,
M.
, 2014, “
Comparison of Explicit Relations of Darcy Friction Measurement With Colebrook-White Equation,” App. Math. Eng., Manage. Technol.,
2(4), pp. 570–578.

Yıldırım,
G.
, 2009, “
Computer-Based Analysis of Explicit Approximations to the Implicit Colebrook–White Equation in Turbulent Flow Friction Factor Calculation,” Adv. Eng. Software,
40(11), pp. 1183–1190.

[CrossRef]
Barr,
D.
, 1981, “
Technical Note. Solutions of the Colebrook-White Function for Resistance to Uniform Turbulent Flow,” Proc. Inst. Civ. Eng.,
71(2), pp. 529–535.

Swanee,
P.
, and
Jain,
A. K.
, 1976, “
Explicit Equations for Pipeflow Problems,” J. Hydraul. Div.,
102(5), pp. 657–664.

Salmasi,
F.
,
Khatibi,
R.
, and
Ghorbani,
M. A.
, 2012, “
A Study of Friction Factor Formulation in Pipes Using Artificial Intelligence Techniques and Explicit Equations,” Turk. J. Eng. Environ. Sci.,
36(2), pp. 121–138.

Brkić,
D.
, 2016, “
A Note on Explicit Approximations to Colebrook's Friction Factor in Rough Pipes Under Highly Turbulent Cases,” Int. J. Heat Mass Transfer,
93, pp. 513–515.

[CrossRef]
Ćojbašić,
Ž.
, and
Brkić,
D.
, 2013, “
Very Accurate Explicit Approximations for Calculation of the Colebrook Friction Factor,” Int. J. Mech. Sci.,
67, pp. 10–13.

[CrossRef]
Taler,
D.
, 2016, “
Determining Velocity and Friction Factor for Turbulent Flow in Smooth Tubes,” Int. J. Therm. Sci.,
105, pp. 109–122.

[CrossRef]
Brkić,
D.
, and
Ćojbašić,
Ž.
, 2017, “
Evolutionary Optimization of Colebrook's Turbulent Flow Friction Approximations,” Fluids,
2(2), pp. 15–41.

Fang,
X.
,
Xu,
Y.
, and
Zhou,
Z.
, 2011, “
New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations,” Nucl. Eng. Des.,
241(3), pp. 897–902.

[CrossRef]