0
Research Papers: Flows in Complex Systems

Experimental Investigation of the Swirl Development at the Inlet of a Coaxial Rotating Diffuser or Nozzle

[+] Author and Article Information
Ferdinand-J. Cloos

Chair of Fluid Systems,
Department of Mechanical Engineering,
Technische Universität Darmstadt,
Otto-Berndt-Str. 2,
Darmstadt, Hesse 64287, Germany
e-mail: ferdinand.cloos@fst.tu-darmstadt.de

Peter F. Pelz

Professor
Chair of Fluid Systems,
Department of Mechanical Engineering,
Technische Universität Darmstadt,
Otto-Berndt-Str. 2,
Darmstadt, Hesse 64287, Germany
e-mail: peter.pelz@fst.tu-darmstadt.de

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received February 6, 2018; final manuscript received November 12, 2018; published online January 29, 2019. Assoc. Editor: Olivier Coutier-Delgosha.

J. Fluids Eng 141(4), 041107 (Jan 29, 2019) (8 pages) Paper No: FE-18-1084; doi: 10.1115/1.4042095 History: Received February 06, 2018; Revised November 12, 2018

When a fluid enters a rotating pipe, a swirl boundary layer with thickness of δ̃S appears at the wall and interacts with the axial momentum boundary layer with thickness of δ̃. The swirl is produced by the wall shear stress and not due to kinematic reasons as by a turbomachine. In the center of the pipe, the fluid is swirl-free and is accelerated due to axial boundary layer growth. Below a critical flow number φ < φc, there is flow separation, known in the turbomachinery context as part load recirculation. The previous work analyzes the flow at the inlet of a coaxial rotating circular pipe (R̃=R̃0). For a systematic approach to a turbomachine, the influence of the turbine's and pump's function, schematically fulfilled by a diffuser and a nozzle, on the evolution of the swirl and flow separation is to analyze. The radius of the rotating pipe depends linearly on the axial coordinate, yielding a rotating circular diffuser or nozzle. The swirl evolution depends on the Reynolds number, flow number, axial coordinate, and apex angle. The influence of the latter is the paper's main task. The circumferential velocity component is measured applying one-dimensional laser Doppler anemometry (LDA) to investigate the swirl evolution.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cloos, F.-J. , Stapp, D. , and Pelz, P. , 2017, “ Swirl Boundary Layer and Flow Separation at the Inlet of a Rotating Pipe,” J. Fluid Mech., 811, pp. 350–371. [CrossRef]
Cloos, F.-J. , Zimmermann, A.-L. , and Pelz, P. , 2016, “ Two Turbulent Flow Regimes at the Inlet of a Rotating Pipe,” Eur. J. Mech. B, 61, pp. 330–335. [CrossRef]
Cloos, F.-J. , Zimmermann, A.-L. , and Pelz, P. , 2016, “ A Second Turbulent Regime When a Fully Developed Axial Turbulent Flow Enters a Rotating Pipe,” ASME Paper No. GT2016-57499.
Stapp, D. , 2015, Experimentelle und Analytische Untersuchung zur Drallgrenzschicht (Forschungsberichte zur Fluidsystemtechnik), Technische Universität Darmstadt, Darmstadt, Germany.
Stapp, D. , and Pelz, P. , 2014, “ Evolution of Swirl Boundary Layer and Wall Stall at Part Load—A Generic Experiment,” ASME Paper No. GT2014-26235.
Stapp, D. , Pelz, P. , and Loens, J. , 2013, “ On Part Load Recirculation of Pumps and Fans—A Generic Study,” Sixth International Conference on Pumps an Fans With Compressors and Wind Turbines, Beijing, China, Sept. 19–22, p. 022003.
Cloos, F.-J. , and Pelz, P. , 2018, “ Developing Swirl Boundary Layer and Flow Separation and the Inlet of a Coaxial Rotating Diffuser or Nozzle,” ASME J. Fluids Eng., 141(7), p. 071102.
Nishibori, K. , Kikuyama, K. , and Murakami, M. , 1987, “ Laminarization of Turbulent Flow in the Inlet Region of an Axially Rotating Pipe,” Bull. JSME, 30, pp. 255–262.
Kikuyama, K. , Murakami, M. , Nishibori, K. , and Maeda, K. , 1983, “ Flow in an Axially Rotating Pipe. A Calculation of Flow in the Saturated Region,” Bull. JSME, 26(214), pp. 506–513. [CrossRef]
Weigand, B. , and Beer, H. , 1994, “ On the Universality of the Velocity Profiles of a Turbulent Flow in an Axially Rotating Pipe,” Appl. Sci. Res., 52(2), pp. 115–132. [CrossRef]
Imao, S. , Itohi, M. , and Harada, T. , 1996, “ Turbulent Characteristics of the Flow in an Axially Rotating Pipe,” Int. J. Heat Fluid Flow, 17(5), pp. 444–451. [CrossRef]
Weigand, B. , and Beer, H. , 1992, “ Fluid Flow and Heat Transfer in an Axially Rotating Pipe: The Rotational Entrance,” Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, pp. 325–340.
Murakami, M. , and Kikuyama, K. , 1980, “ Turbulent Flow in Axially Rotating Pipes,” ASME J. Fluids Eng., 102(1), pp. 97–103. [CrossRef]
Kikuyama, K. , Murakami, M. , and Nishibori, K. , 1983, “ Development of Three-Dimensional Turbulent Boundary Layer in an Axially Rotating Pipe,” ASME J. Fluids Eng., 105(2), pp. 154–160. [CrossRef]
Reich, G. , 1988, “ Strömung und Wärmeübertragung in Einem Axial Rotierenden Rohr,” Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt, Germany.
Oberlack, M. , 1999, “ Similarity in Non-Rotating and Rotating Turbulent Pipe Flows,” J. Fluid Mech., 379, pp. 1–22. [CrossRef]
Stratford, B. , 1959, “ The Prediction of Separation of the Turbulent Boundary Layer,” J. Fluid Mech., 5(1), pp. 1–16. [CrossRef]
Lavan, Z. , Nielsen, H. , and Fejer, A. , 1969, “ Separation and Flow Reversal in Swirling Flows in Circular Ducts,” Phys. Fluids, 12(9), pp. 1747–1757. [CrossRef]
Imao, S. , Zhang, Q. , and Yamada, Y. , 1989, “ The Laminar Flow in the Developing Region of a Rotating Pipe,” Bull. JSME, 32, pp. 317–323.
Crane, C. , and Burley, D. , 1976, “ Numerical Studies of Laminar Flow in Ducts and Pipes,” J. Comput. Appl. Math., 2(2), pp. 95–111. [CrossRef]
Jungnitz, G. , 1949, “ Rechnerische Untersuchung Von Diffusoren,” Forsch. Ingenieurwes., 16(2), pp. 60–62. [CrossRef]
Szablewski, W. , 1952, “ Turbulente Strömungen in Konvergenten Kanälen,” Arch. Appl. Mech., 20(1), pp. 37–45.
Szablewski, W. , 1954, “ Turbulente Strömungen in Divergenten Kanälen,” Arch. Appl. Mech., 22(4), pp. 268–281.
Schlichting, H. , and Gersten, K. , 1961, “ Berechnung Der Strömung in Rotationssymmetrischen Diffusoren Mit Hilfe Der Grenzschichttheorie,” Z. Flugwiss., 9(4/5), pp. 136–140.
Börger, G.-G. , 1973, “ Optimierung von Windkanaldüsen für den Unterschallbereich,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
Gersten, K. , and Herwig, H. , 1992, Strömungsmechanik: Grundlagen Der Impuls-, Wärme- und Stoffübertragung Aus Asymptotischer Sicht, Vieweg, Braunschweig/Wiesbaden, Germany.
Seifert, F. , 2006, “ Berechnung Inkompressibler Reibungsbehafteter Ringdiffusorströmungen Nach der Schlankkanaltheorie,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
Taylor, G. , 1950, “ The Boundary Layer in the Converging Nozzle of a Swirl Atomizer,” Q. J. Mech. Appl. Math., 3(2), pp. 129–139. [CrossRef]
Binnie, A. , and Harris, D. , 1950, “ The Application of Boundary-Layer Theory to Swirling Liquid Flow Through a Nozzle,” Q. J. Mech. Appl. Math., 3(1), pp. 89–106. [CrossRef]
Broujerdi, A. , and Kerbriaee, A. , 2010, “ Pressure Loss of Turbulent Swirling Flow in Convergent Nozzle,” 18th Annual International Conference on Mechanical Engineering (ISME), Tehran, Iran, May 11–13, Paper No. ISME2100-3101.

Figures

Grahic Jump Location
Fig. 3

Laser beam path into the rotating pipe of the 1D laser Doppler anemometry

Grahic Jump Location
Fig. 2

Experimental setup with (a) configuration I for a thin axial boundary layer and (b) configuration II for a fully developed axial boundary layer

Grahic Jump Location
Fig. 1

Flow through the inlet of a rotating circular diffuser

Grahic Jump Location
Fig. 4

Interpolated isolines of uϕ show the development of the swirl boundary layer for configuration I. Measurement points are illustrated by the markers.

Grahic Jump Location
Fig. 5

Swirl boundary layer thickness δS02 with various apex angles versus (a) axial coordinate, (b) Reynolds number, and (c) flow number for configuration I

Grahic Jump Location
Fig. 6

Swirl boundary layer thickness δS07 with various apex angles versus (a) axial coordinate, (b) Reynolds number, and (c) flow number for configuration II

Grahic Jump Location
Fig. 7

Swirl velocity profile for various axial coordinates, Reynolds number, flow number, and apex angle for (a)–(d) configuration I, a thin axial laminar boundary layer, and for (e)–(h) configuration II, a fully developed axial turbulent boundary layer

Grahic Jump Location
Fig. 8

Turbulence intensity of the swirl velocity for various axial coordinates, Reynolds number, flow number, and apex angle for (a)–(d) configuration I, a thin axial laminar boundary layer, and for (e)–(h) configuration II, a fully developed axial turbulent boundary layer

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In