0
research-article

Effects of downstream structures on aero elastic energy harvesters from wake-induced vibration

[+] Author and Article Information
Pakorn Uttayopas

Department of Mechanical engineering, Kasetsart Unversity, Bangkok, Thailand
mindgats@gmail.com

Chawalit Kittichaikarn

Department of Mechanical engineering, Kasetsart Unversity, Bangkok, Thailand
fengclk@ku.ac.th

1Corresponding author.

ASME doi:10.1115/1.4042169 History: Received February 26, 2018; Revised November 27, 2018

Abstract

An upstream cylindrical bluff body connected to a tip body via an aluminum cantilever beam was tested as energy harvester in a wind tunnel. The characteristics and behavior of the different tip body configurations and lengths of aluminum cantilever beam were studied to optimize design to extract wind energy. Particular attention was paid to measuring vibration amplitude and frequency response as a function of reduced velocity. Dynamic response showed that the device's behavior was dependent on both tip body shape and cantilever beam length. Flow visualization tests showed that high amplitude vibration was obtainable when a vortex was fully formed on each side of the downstream tip body. This was exemplified in a symmetrical triangular prism tip body at L/D1 = 5, where its structure's vibration frequency was close to its natural frequency. At such configuration, electrical energy was captured using a Polyvinylidene Fluoride (PVDF) piezoelectric beam of different load resistances, where an optimized load resistance could be found for each Reynolds number. Although power output and efficiency obtained were considerably weak when compared to those of traditional wind turbine, the design merits further research to improve its performance under various circumstances.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In