Floryan,
J. M.
, 1997, “
Stability of Wall-Bounded Shear Layers in the Presence of Simulated Distributed Surface Roughness,” Fluid Mech.,
335(1), pp. 29–55.

[CrossRef]
Degroot,
C. T.
,
Wang,
C.
, and
Floryan,
J. M.
, 2016, “
Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow,” ASME J. Fluids Eng.,
138(12), p. 121201.

White,
F.
, 2003, Fluid Mechanics, 5th ed.,
McGraw-Hill,
Boston, MA.

Bechert,
D. W.
,
Bruse,
M.
,
Hage,
W.
,
van der Hoeven,
J. G. T.
, and
Hoppe,
G.
, 1997, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry,” J. Fluid Mech.,
338(5), pp. 59–87.

[CrossRef]
Bechert,
D. W.
,
Hoppe,
G.
,
Van der Hoeven,
J. G. T.
, and
Makris,
R.
, 1992, “
The Berlin Oil Channel for Drag Reduction Research,” Exp. Fluids,
12(4–5), pp. 251–60.

[CrossRef]
Bechert,
D. W.
,
Bruse,
M.
, and
Hage,
W.
, 2000, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin,” Exp. Fluids,
28(5), pp. 403–412.

[CrossRef]
Fink,
V.
,
Guttler,
A.
, and
Frohnapfel,
B.
, 2015, “
Experimental and Numerical Investigation of Riblets in a Fully Developed Turbulent Channel Flow,” European Drag Reduction and Flow Control Meeting, Cambridge, UK, Mar. 23–26.

Friedmann,
E.
, 2005, “
Optimal Shape Design and Its Application to Microstructures ,” Sixth World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 30–June 3.

Oefner,
J.
, and
Lauder,
G. V.
, 2012, “
The Hydrodynamic Function of Shark Skin and Two Biomimetic Applications,” J. Exp. Biol.,
21(5), pp. 785–795.

[CrossRef]
Zhang,
D.
,
Luo,
Y.
,
Li,
X.
, and
Chen,
H.
, 2011, “
Numerical Simulation and Experimental Study of Drag-Reducing Surface of a Real Shark Skin,” J. Hydrodyn,
23(2), pp. 204–211.

[CrossRef]
Chen,
H.
,
Rao,
F.
,
Shang,
X.
,
Zhang,
D.
, and
Hagiwara,
I.
, 2013, “
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather,” J. Bionic Eng.,
10(3), pp. 341–349.

[CrossRef]
Cui,
J.
, and
Fu,
Y.
, 2012, “
A Numerical Study on Pressure Drop in Microchannel Flow With Different Bionic Micro-Grooved Surfaces,” J. Bionic Eng.,
9(1), pp. 99–109.

[CrossRef]
Zhao,
D. Y.
,
Huang,
Z. P.
,
Wang,
M. J.
,
Wang,
T.
, and
Jin,
Y.
, “
Vacuum Casting Replication of Micro-Riblets on Shark Skin for Drag-Reducing Applications,” J. Mater. Process. Technol.,
212(1), pp. 198–202.

[CrossRef]
Stenzel,
V.
,
Wilke,
Y.
, and
Hage,
W.
, 2011, “
Drag-Reducing Paints for the Reduction of Fuel Consumption in Aviation and Shipping,” Prog. Org. Coat.,
70(4), pp. 224–229.

[CrossRef]
Lang,
A. W.
, and
Johnson,
T. J.
, 2010, “
Drag Reduction Over 2D Square Embedded Cavities in Couette Flow,” Mech. Res. Comm.,
37(4), pp. 432–435.

[CrossRef]
Choi,
K. S.
, 1998, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets,” J. Fluid Mech,
208(1), pp. 417–458.

Tian,
L. M.
,
Ren,
L. Q.
,
Liu,
Q. P.
,
Han Zhi,
W.
, and
Jiang,
X.
, 2007, “
The Mechanism of Drag Reduction Around Bodies of Revolution Using Bionic Non-Smooth Surfaces,” Bionic Eng.,
4(2), pp. 109–116.

[CrossRef]
Viswanath,
P. R.
, 2002, “
Aircraft Viscous Drag Reduction Using Riblets,” Prog. Aerosp. Sci.,
38(6–7), pp. 571–600.

[CrossRef]
Suzuki,
Y.
, and
Kasagi,
N.
, 1994, “
Turbulent Drag Reduction Mechanism Above a Rib Let Surface,” AIAA J.,
32(9), pp. 1781–1790.

[CrossRef]
Daschiel,
G.
,
Peric,
M.
,
Jovanovic,
J.
, and
Delgado,
A.
, 2013, “
The Holy Grail of Microfluidics: Sub-Laminar Drag by Layout of Periodically Embedded Microgrooves,” Microfluid. Nanofluid.,
15(5), pp. 675–687.

[CrossRef]
Mohammadi,
A.
, and
Floryan,
J. M.
, “
Groove Optimization for Drag Reduction,” Phys. Fluids,
25(11), pp. 113–601.

Moussaoui,
M.
,
Jami,
M.
,
Mezrhab,
A.
, and
Naji,
H. J.
, 2009, “
Lattice Boltzmann Simulation of Convective Heat Transfer From Heated Blocks in a Horizontal Channel,” Int. J. Comput. Methods,
56(5), pp. 422–443.

Mazloomi,
A.
, and
Moosavi,
A.
, 2013, “
Thin Liquid Film Flow Over Substrates With Two Topographical Features,” Phys. Rev. E,
87(2), pp. 022–409.

[CrossRef]
Mazloomi,
A.
,
Moosavi,
A.
, and
Esmaili,
E.
, 2013, “
Gravity-Driven Thin Liquid Films Over Topographical Substrates,” Eur. Phys. J. E,
36(6), pp. 1292–8941.

[CrossRef]
Murdock,
J.
,
Ibrahim,
A.
, and
Yang,
S.
, 2017, “
An Efficient Method of Generating and Characterizing Filter Substrates for Lattice Boltzmann Analysis,” ASME J. Fluids Eng.,
140(4), p. 041203.

Merdasi,
A.
,
Ebrahimi,
S.
,
Moosavi,
A.
,
Shafii,
M. B.
, and
Kowsary,
F.
, 2018, “
Numerical Simulation of Collision Between Two Droplets in the T-Shaped Microchannel With Lattice Boltzmann Method,” AIP Adv.,
6(11), pp. 115–307.

Merdasi,
A.
,
Ebrahimi,
S.
,
Moosavi,
A.
,
Shafii,
M. B.
, and
Kowsary,
F.
, 2018, “
Simulation of a Falling Droplet in a Vertical Channel With Rectangular Obstacles,” Eur. J. Fluid Mech. B/Fluids,
118(2), pp. 108–117.

[CrossRef]
Bhatnagar,
P. L.
,
Cross,
E. P.
, and
Krook,
M.
, 1954, “
A Model for Collision Process in Gases,” Phys. Rev.,
94(3), pp. 511–525.

[CrossRef]
Sukop,
M. C.
, and
Throne,
D.
, 2006, Lattice Boltzmann Modeling-An Introduction for Geoscientists and Engineers,
Springer,
Berlin.

Chapman,
S.
, and
Cowling,
T. G.
, 1970, The Mathematical Theory of Non-Uniform Gases,
Cambridge University Press,
Cambridge, UK.

Wolf-Gladrow,
D.
, 2000, Lattice-Gas Cellular Automata and Lattice Boltzmann Models-An Introduction,
Springer,
Berlin.

Lallemand,
P.
, and
Luo,
L. S.
, 1996, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability,” Phys. Rev. E,
61(6), pp. 6546–6562.

[CrossRef]
Succi,
S.
, 2001, The Lattice Boltzmann Equation for Fluid Mechanics and Beyond Oxford,
Clarendon,
UK.

Zou,
Q.
, and
He,
X.
, 1997, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids,
9(6), pp. 1591–1598.

[CrossRef]
Mohamad,
A. A.
, 2011, “
Lattice Boltzmann Method, Fundamentals and Engineering,” Applications With Computer Codes,
Springer,
Berlin.

He,
X.
, and
Luo,
L. S.
, 1997, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation,” Phys. Rev. E,
56(6), pp. 6811–6817.

[CrossRef]
Varnik,
F.
,
Dorner,
D.
, and
Raabe,
D.
, 2007, “
Roughness-Induced Flow Instability: A Lattice Boltzmann Study,” J. Fluid Mech.,
573(4), pp. 191–210.

[CrossRef]
Zhu,
L.
,
Tretheway,
D.
,
Petzold,
L.
, and
Meinhart,
C.
, 2005, “
Simulation of Fluid Slip At3d Hydrophobic Microchannel Walls by the Lattice Boltzmann Method,” J. Comput. Phys.,
202(1), pp. 181–195.

[CrossRef]
Ghia,
U.
,
Ghia,
K. N.
, and
Shin,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys.,
48(3), pp. 387–411.

[CrossRef]
Chen,
S.
, and
Doolen,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech.,
30(1), pp. 329–364.

[CrossRef]