Plesset,
M. S.
, and
Chapman,
R. B.
, 1971, “
Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary,” J. Fluid Mech.,
47(2), pp. 283–290.

[CrossRef]
Rayleigh,
L.
, 1917, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” London, Edinburgh, Dublin Philos. Mag. J. Sci.,
34(200), pp. 94–98.

[CrossRef]
Hickling,
R.
, and
Plesset,
M. S.
, 1964, “
Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids,
7, pp. 7–14.

Plesset,
M. S.
, and
Hsieh,
D.
, 1977, “
Theory of Gas Bubble Dynamics in Oscillating Pressure Fields,” Phys. Fluids,
3, pp. 882–892.

Plesset,
M. S.
, and
Prosperetti,
A.
, 1977, “
Bubble Dynamics and Cavitation,” Ann. Rev. Fluid Mech.,
9(1), pp. 145–185.

[CrossRef]
Brennen,
C. E.
, 1995, Cavitation and Bubble Dynamics,
Oxford University Press,
New York.

van Wijngaarden,
L.
, 1966, On the Collective Collapse of a Large Number of Gas Bubbles in Water,
Netherlands Ship Model Basin,
Wageningen, The Netherlands.

Mørch,
K. A.
, 1982, “
Energy Considerations on the Collapse of Cavity Clusters,” Appl. Sci. Res.,
38, p. 313.

Isselin,
J.-C.
,
Aloncle,
A.-P.
, and
Autric,
M.
, 1998, “
On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys.,
84(10), pp. 5766–5771.

[CrossRef]
Philipp,
A.
, and
Lauterborn,
W.
, 1998, “
Cavitation Erosion by Single Laser-Produced Bubbles,” J. Fluid Mech.,
361, pp. 75–116.

[CrossRef]
Hammit,
F. G.
, 1963, “
Observations on Cavitation Damage in a Flowing System,” J. Basic Eng.,
85(3), pp. 347–356.

[CrossRef]
Vogel,
A.
, and
Lauterborn,
W.
, 1988, “
Acoustic Transient Generation by Laser-Produced Cavitation Bubbles Near Solid Boundaries,” J. Acoust. Soc. Am.,
84(2), pp. 719–731.

[CrossRef]
Dular,
M.
,
Stoffel,
B.
, and
Sirok,
B.
, 2006, “
Development of a Cavitation Erosion Model,” Wear,
261(5–6), pp. 642–655.

[CrossRef]
Dular,
M.
,
Pozar,
T.
,
Zevnik,
J.
, and
Petkovsek,
R.
, 2019, “
High Speed Observation of Damage Created by a Collapse of a Single Cavitation Bubble,” Wear,
418–419, pp. 13–26.

[CrossRef]
Fortes-Patella,
R.
, and
Reboud,
J. L.
, 1998, “
A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng.,
120(2), pp. 335–344.

[CrossRef]
Fortes-Patella,
R.
,
Challier,
G.
,
Reboud,
J. L.
, and
Archer,
A.
, 2013, “
Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface,” ASME J. Fluids Eng.,
135(1), p. 011303.

[CrossRef]
Franc,
J. P.
, and
Michel,
J. M.
, 2004, Fundamentals of Cavitation,
Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Tomita,
Y.
, and
Shima,
A.
, 1986, “
Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech.,
169(1), pp. 535–564.

[CrossRef]
Bark,
G.
,
Berchiche,
N.
, and
Grekula,
M.
, 2004, “
Application of Principles for Observation and Analysis of Eroding Cavitation,” EROCAV Observation Handbook,
Chalmers University of Technology,
Gothenburg, Sweeden.

Tinguely,
M.
,
Obreschkow,
D.
,
Kobel,
P.
,
Dorsaz,
N.
,
de Bosset,
A.
, and
Farhat,
M.
, 2012, “
Energy Partition at the Collapse of Spherical Cavitation Bubbles,” Phys. Rev. E,
86(4 Pt 2), p. 046315.

[CrossRef]
van Terwisga,
T. J. C.
,
Fitzsimmons,
P. A.
,
Li,
Z.
, and
Foeth,
E. J.
, 2009, “
Cavitation Erosion—A Review of Physical Mechanism and Erosion Risk Models,” Seventh International Symposium on Cavitation, Ann Arbor, MI, Aug. 15–20, Paper No. 41.

Eskilsson,
C.
, and
Bensow,
R. E.
, 2015, “
Estimation of Cavitation Erosion Intensity Using CFD: Numerical Comparison of Three Different Methods,” Fourth International Symposium on Marine Propulsors, Austin, TX, Austin, TX, May 31–June 4, pp. 9–17.

Fortes-Patella,
R.
,
Reboud,
J.-L.
, and
Briancon-Marjollet,
L.
, 2004, “
A Phenomenological and Numerical Model for Scaling the Flow Agressiveness in Cavitation Erosion,” EROCAV Workshop, Val de Reuil, France, May.

Leclercq,
C.
,
Archer,
A.
,
Fortes-Patella,
R.
, and
Cerru,
F. R. F.
, 2017, “
Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows,” Int. J. Fluid Mach. Syst.,
10(3), pp. 254–263.

[CrossRef]
Schenke,
S.
, and
van Terwisga,
T. J. C.
, 2018, “
Erosive Aggressiveness of Collapsing Cavitating Structures,” Tenth International Symposium on Cavitation, Baltimore, MD, May 14–16, Paper No. 69.

Cao,
Y. T.
,
Peng,
X. X.
,
Yan,
K.
,
Xu,
L. H.
, and
Shu,
L. W.
, 2017, “
A Qualitative Study on the Relationship Between Cavitation Structure and Erosion Region Around a 3D Twisted Hydrofoil by Painting Method,” Fifth International Symposium on Marine Propulsors, Espoo, Finland, June 12–15, pp. 1–5.

Kato,
H.
,
Konno,
A.
,
Maeda,
M.
, and
Yamaguchi,
H.
, 1996, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test,” ASME J. Fluids Eng.,
118(3), pp. 582–588.

[CrossRef]
Dular,
M.
, and
Coutier-Delgosha,
O.
, 2009, “
Numerical Modelling of Cavitation Erosion,” Int. J. Numer. Meth. Fluids,
61(12), pp. 1388–1410.

[CrossRef]
Mihatsch,
M. S.
,
Schmidt,
S. J.
,
Thalhamer,
M.
, and
Adams,
N. A.
, 2011, “
Numerical Prediction of Erosive Collapse Events in Unsteady Compressible Cavitating Flows,” Fourth International Conference on Computational Methods in Marine Engineering, Lisbon, Portugal, Sept. 28–30, pp. 499–509.

Flageul,
C.
,
Fortes-Patella,
R.
, and
Archer,
A.
, 2012, “
Cavitation Erosion Prediction by Numerical Simulations,” 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, Feb. 27–Mar. 2.

Lush,
P.
, 1983, “
Impact of a Liquid Mass on a Perfectly Plastic Solid,” J. Fluid Mech.,
135(1), pp. 373–387.

[CrossRef]
Lauer,
E.
,
Hu,
X. Y.
,
Hickel,
S.
, and
Adams,
N. A.
, 2012, “
Numerical Modelling and Investigation of Symmetric and Asymmetric Cavitation Bubble Dynamics,” Comput. Fluids,
69, pp. 1–19.

[CrossRef]
Chahine,
G. L.
,
Franc,
J.-P.
, and
Karimi,
A.
, eds., 2014, “
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction,” Cavitation and Cavitation Erosion: Computational and Experimental Approaches, 1st. ed., Vol.
106,
Springer,
Dordrecht, The Netherlands, pp. 3–180.

Peters,
A.
,
Sagar,
H.
,
Lantermann,
U.
, and
el Moctar,
O.
, 2015, “
Numerical Modelling and Prediction of Cavitation Erosion,” Wear,
338–339, pp. 189–201.

[CrossRef]
Schenke,
S.
, and
van Terwisga,
T. J. C.
, 2017, “
Numerical Prediction of Vortex Dynamics in Inviscid Sheet Cavitation,” 20th Numerical Towing Tank Symposium, Wageningen, The Netherlands, Oct. 1–3, pp. 199–201.

Menter,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications,” AIAA J.,
32(8), pp. 1598–1605.

[CrossRef]
Melissaris,
T.
,
Bulten,
N.
, and
van Terwisga,
T. J. C.
, 2017, “
A Numerical Study on the Shedding Frequency of Sheet Cavitation,” Seventh International Conference on Computational Methods in Marine Engineering, Nantes, France, May 15–17, pp. 801–812.

Reboud,
J.-L.
, and
Delannoy,
Y.
, 1994, “
Two-Phase Flow Modelling of Unsteady Cavitation,” Second International Symposium on Cavitation, Tokyo, Japan, Apr. 5–7.

Reboud,
J.-L.
,
Stutz,
B.
, and
Coutier,
O.
, 1998, “
Two-Phase Flow Structure of Cavitation: Experiment and Modelling of Unsteady Effects,” Third International Symposium on Cavitation, Grenoble, France, Apr. 7–10.

Schnerr,
G. H.
, and
Sauer,
J.
, 2001, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics,” Fourth International Conference on Multiphase Flow, New Orleans, LA, May 27–June 1.

Schenke,
S.
, and
van Terwisga,
T. J. C.
, 2019, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations,” J. Multiphase Flow,
111, pp. 200–218.

[CrossRef]
Crepier,
P.
, 2017, “
Ship Resistance Prediction: Verification and Validation Exercise on Unstructured Grids,” Seventh International Conference on Computational Methods in Marine Engineering, Nantes, France, May 15–17, pp. 365–376.

Eca,
L.
, and
Hoekstra,
M.
, 2014, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies,” J. Comput. Phys.,
262, pp. 104–130.

[CrossRef]
Vaz,
G.
,
Lloyds,
T.
, and
Gnanasundaram,
A.
, 2017, “
Improved Modelling of Sheet Cavitation Dynamics on Delft Twist11 Hydrofoil,” Seventh International Conference on Computational Methods in Marine Engineering, Nantes, France, May 15–17, pp. 143–156.

Brouwer,
J.
,
Tukker,
J.
, and
van Rijsbergen,
M.
, 2015, “
Uncertainty Analysis of Finite Length Signals,” Forth International Conference on Advanced Model Measurement Technologies for the Maritime Industry, Istanbul, Turkey, Sept. 28–30.

Brouwer,
J.
,
Tukker,
J.
, and
van Rijsbergen,
M.
, 2013, “
Uncertainty Analysis and Stationarity Test of Finite Length Time Series Signals,” Third International Conference on Advanced Model Measurement Technologies for the Maritime Industry, Gdansk, Poland, Sept. 17–18.

Foeth,
E.-J.
, 2008, “
The Structure of Three-Dimensional Sheet Cavitation,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.

Oprea,
A.
, 2013, “
Prediction of Tip Vortex Cavitation for Ship Propellers,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.

Muzaferija,
S.
,
Papoulias,
D.
, and
Peric,
M.
, 2017, “
VOF Simulations of Hydrodynamic Cavitation Using the Asymptotic and Classical Rayleigh-Plesset Models,” Fifth International Symposium on Marine Propellers, Espoo, Finland, June 12–15, pp. 50–57.

Carrat,
J.-B.
,
Fortes-Patella,
R.
, and
Franc,
J.-P.
, 2017, “
Assessment of Cavitating Flow Aggressiveness on a Hydrofoil: Experimental and Numerical Approaches,” ASME Paper No. FEDSM2017-69187.

Li,
Z.
, and
van Terwisga,
T.
, 2014, “
Assessment of Cavitation Erosion With a URANS Method,” ASME J. Fluids Eng.,
136(4), p. 041101.

[CrossRef]