Crawford,
N. M.
,
Cunningham,
G.
, and
Spence,
S. W. T.
, 2007, “
An Experimental Investigation Into the Pressure Drop for Turbulent Flow in 90° Elbow Bends,” Proc. Inst. Mech. Eng., Part E,
221(2), pp. 77–88.

Al-Tameemi,
W. M.
, and
Ricco,
P.
, 2018, “
Pressure-Loss Coefficient of 90 Deg Sharp-Angled Miter Elbows,” ASME. J. Fluids Eng.,
140(6), p. 061102.

Kalpakli Vester,
A.
,
Örlü,
R.
, and
Alfredsson,
P.
, 2016, “
Turbulent Flows in Curved Pipes: Recent Advances in Experiments and Simulations,” ASME Appl. Mech. Rev.,
68(5), p. 050802.

Verma,
M. P.
, 2013, “
Steam Transport Simulation in a Geothermal Pipeline Network Constrained by Internally Consistent Thermodynamic Properties of Water,” Rev. Mex. Cienc. Geol.,
30(1), pp. 210–221.

Ellenberger,
J. P.
, 2010, Piping and Pipeline Calculations Manual: Construction, Design Fabrication, and Examination,
Elsevier,
Burlington, MA.

García-Gutiérez,
A.
,
Hernández,
A. F.
,
Martínez,
J. I.
,
Ceceñas,
M.
,
Ovando,
R.
, and
Canchola,
I.
, 2015, “
Hydraulic Model and Steam Flow Numerical Simulation of the Cerro Prieto Geothermal Field, Mexico, Pipeline Network,” Appl. Therm. Eng.,
75, pp. 1229–1243.

Crane, 1988, Flow of Fluids Through Valves, Fittings, and Pipes,
Crane,
New York.

Idelchik,
I. E.
, 1986, Handbook of Hydraulic Resistance, 2nd ed.,
Hemisphere,
Washington, DC.

Martínez-Estrella,
J. I.
,
García-Gutiérrez,
A.
,
Hernández-Ochoa,
A. F.
,
Verma,
M. P.
,
Mendoza-Covarrubias,
A.
, and
Ruiz-Lemus,
A.
, 2010, “
Simulación Numérica de la Operación de la Red de Transporte de Vapor Del Campo Geotérmico de Los Azufres, Mich,” Geotermia,
23(2), pp. 2–12.

García-Gutiérrez,
A.
,
Martínez-Estrella,
J. I.
,
Hernández-Ochoa,
A. F.
,
Verma,
M. P.
,
Mendoza-Covarrubias,
A.
, and
Ruiz-Lemus,
A.
, 2010, “
Development of a Numerical Hydraulic Model of the Los Azufres Steam Pipeline Network,” Geothermics,
32(3), pp. 313–325.

Hooper,
W.
, 1981, “
The Two-K Method Predicts Head Losses in Pipe Fittings,” Chem. Eng.,
88, pp. 96–100.

Rennels,
D. C.
, and
Hudson,
H. M.
, 2012, Pipe Flow: A Practical and Comprehensive Guide,
Wiley,
Hoboken, NJ.

Enayet,
M. M.
,
Gibson,
M. M.
,
Taylor,
A. M. K. P.
, and
Yianneskis,
M.
, 1982, “
Laser- Doppler Measurements of Laminar and Turbulent Flow in a Pipe Bend,” Int. J. Heat Fluid Flow,
3(4), pp. 213–219.

Ono,
A.
,
Kimura,
N.
,
Kamide,
H.
, and
Tobita,
A.
, 2011, “
Influence of Elbow Curvature on Flow Structure at Elbow Outlet Under High Reynolds Number Condition,” Nucl. Eng. Des.,
241(11), pp. 4409–4419.

Takamura,
H.
,
Ebara,
S.
,
Hashizume,
H.
,
Aizawa,
K.
, and
Yamano,
H.
, 2012, “
Flow Visualization and Frequency Characteristics of Velocity Fluctuations of Complex Turbulent Flow in a Short Elbow Piping Under High Reynolds Number Condition,” ASME J. Fluid Eng.,
134(10), p. 101201.

Hüttl,
T. J.
, and
Friedrich,
R.
, 2001, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes,” Comput. Fluids,
30(5), pp. 591–605.

Noorani,
A.
,
El Khoury,
G. K.
, and
Schlatter,
P.
, 2013, “
Evolution of Turbulence Characteristics From Straight to Curved Pipes,” Int. J. Heat Fluid Flow,
41, pp. 16–26.

Tanaka,
M. A.
,
Ohshima,
H.
, and
Monji,
H.
, 2009, “
Numerical Investigation of Flow Structure in Pipe Elbow With Large Eddy Simulation Approach,” ASME Paper No. PVP2009-77598.

Rütten,
F.
,
Schröder,
W.
, and
Meinke,
M.
, 2005, “
Large-Eddy Simulation of Low Frequency Oscillations of the Dean Vortices in Turbulent Pipe Bend Flows,” Phys. Fluids,
17(3), p. 035107.

Eguchi,
Y.
,
Murakami,
T.
,
Tanaka,
M.
, and
Yamano,
H.
, 2011, “
A Finite Element LES for high-Re Flow in a Short-Elbow Pipe With Undisturbed Inlet Velocity,” Nucl. Eng. Des.,
241(11), pp. 4368–4378.

Tan,
L.
,
Zhu,
B.
,
Wang,
Y.
,
Cao,
S.
, and
Liang,
K.
, 2014, “
Turbulent Flow Simulation Using Large Eddy Simulation Combined With Characteristic-Based Split Scheme,” Comput. Fluids,
94, pp. 161–172.

Kim,
J.
,
Yadav,
M.
, and
Kim,
S.
, 2014, “
Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow,” Eng. Appl. Comput. Fluid Mech.,
8(2), pp. 229–239.

Crawford,
N.
,
Spence,
S.
,
Simpson,
A.
, and
Cunningham,
G.
, 2009, “
A Numerical Investigation of the Flow Structures and Losses for Turbulent Flow in 90° Elbow Bends,” Proc. Inst. Mech. Eng., Part E,
223(1), pp. 27–44.

Dutta,
P.
, and
Nandi,
N.
, 2015, “
Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends,” Mech. Mech. Eng.,
19(1), pp. 5–16.

Dutta,
P.
,
Saha,
S. K.
,
Nandi,
N.
, and
Pal,
N.
, 2016, “
Numerical Study on Flow Separation in 90° Pipe Bend Under High Reynolds Number by k-ε Modelling,” Eng. Sci. Technol., Int. J.,
19(2), pp. 904–910.

Wang,
Y.
,
Dong,
Q.
, and
Wang,
P.
, 2015, “
Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe With Large Curvature Ratio,” Math. Probl. Eng.,
2015, pp. 1–12.

Wang,
S.
,
Ren,
C.
,
Sun,
Y.
,
Yang,
X.
, and
Tu,
J.
, 2016, “
A Study on the Instantaneous Turbulent Flow Field in a 90-Degree Elbow Pipe With Circular Section,” Sci. Technol. Nucl. Install.,
2016, pp. 1–8.

Dutta,
P.
, and
Nandi,
N.
, 2015, “
Study on Pressure Drop Characteristics of Single Phase Turbulent Flow in Pipe Bend for High Reynolds Number,” ARPN J. Eng. Appl. Sci.,
10(5), pp. 2221–2226.

Wang,
S.
,
Ren,
C.
,
Gui,
N.
,
Sun,
Y.
,
Tu,
J.
,
Yang,
X.
, and
Jiang,
S.
, 2017, “
Experimental and Numerical Study on the Circumferential Pressure Distribution on the Wall of a 90° Elbow Pipe With Circular Section,” Ann. Nucl. Energy,
109, pp. 419–430.

Dutta,
P.
, and
Nandi,
N.
, 2016, “
Effect of Bend Curvature on Velocity & Pressure Distribution From Straight to a 90° Pipe bend-A Numerical Study,” Rest J. Emerging Trends Modell. Manuf.,
2, pp. 103–108.

Dutta,
P.
, and
Nandi,
N.
, 2018, “
Numerical Study on Turbulent Separation Reattachment Flow in Pipe Bends With Different Small Curvature Ratio,” J. Inst. Eng. (epub).

Verma,
M. P.
, and
Torres-Encarnación,
J. A.
, 2018, “
GeoSteam.Net: Steam Transport Simulator for Geothermal Pipeline Network,” 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Feb. 12–14, pp. 1–6.

Fernández,
J. M.
, 2012, Técnicas Numéricas en Ingeniería de Fluidos,
Editorial Reverté,
Barcelona, Spain.

Wagner,
W.
,
Cooper,
J. R.
,
Dittmann,
A.
,
Kijima,
J.
,
Kretzschmar,
H.-J.
,
Kruse,
A.
,
Mareš,
R.
,
Oguchi,
K.
,
Sato,
H.
,
Stöcker,
I.
,
Šifner,
O.
,
Takaishi,
Y.
,
Tanishita,
I.
,
Trübenbach,
J.
, and
Willkommen,
T.
, 2000, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,” ASME J. Eng. Gas Turbines Power,
122(1), pp. 150–182.

Yakhot,
V.
, and
Orszag,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence I: Basic Theory,” J. Sci. Comput.,
1(1), pp. 3–51.

ANSYS, 2013, ANSYS CFX-Solver Theory Guide, Release 15,
ANSYS,
Canonsburg, PA.

Sudo,
K.
,
Sumida,
M.
, and
Hibara,
H.
, 1998, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90° Bend,” Exp. Fluids,
25(1), pp. 42–49.

Ito,
H.
, 1960, “
Pressure Losses in Smooth Pipe Bends,” ASME J. Basic Eng., Ser. D,
82(1), pp. 131–140.