The flow of oil/water mixtures in a pipe can occur under different flow patterns. Additionally, being able to predict adequately pressure drop in such systems is of relevant importance to adequately design the conveying system. In this work, an experimental and numerical study of the fully dispersed flow regime of an oil/water mixture (liquid paraffin and water) in a horizontal pipe, with concentrations of the oil of 0.01, 0.13, and 0.22 v/v were developed. Experimentally, the values of pressure drop, flow photographs, and radial volumetric concentrations of the oil in the vertical diameter of the pipe cross section were collected. In addition, normalized conductivity values were obtained, in this case, for a cross section of the pipe where an electrical impedance tomography (EIT) ring was installed. Numerical studies were carried out in the comsolmultiphysics platform, using the Euler–Euler approach, coupled with the k–*ε* turbulence model. In the simulations, two equations for the calculation of the drag coefficient, Schiller–Neumann and Haider–Levenspiel, and three equations for mixture viscosity, Guth and Simba (1936), Brinkman (1952), and Pal (2000), were studied. The simulated data were validated with the experimental results of the pressure drop, good results having been obtained. The best fit occurred for the simulations that used the Schiller–Neumann equation for the calculation of the drag coefficient and the Pal (2000) equation for the mixture viscosity.