Bonizzi,
M.
,
Andreussi,
P.
, and
Banerjee,
S.
, 2009, “
Flow Regime Independent, High Resolution Multi-Field Modelling of Near-Horizontal Gas–Liquid Flows in Pipelines,” Int. J. Multiphase Flow,
35(1), pp. 34–46.

[CrossRef]
Nicklin,
D. J.
, 1962, “
Two-Phase Bubble Flow,” Chem. Eng. Sci.,
17(9), pp. 693–702.

[CrossRef]
Zuber,
N.
, and
Findlay,
J. A.
, 1965, “
Average Volumetric Concentration in Two-Phase Flow Systems,” ASME J. Heat Transfer,
87(4), p. 453.

[CrossRef]
Cunliffe,
R. S.
, 1978, “
Prediction of Condensate Flow Rates in Large Diameter High Pressure Wet Gas Pipelines,” APPEA J.,
18(1), p. 171.

[CrossRef]
Modisette,
L.
, and
Whaley,
R. S.
, 1983, “
Transient Two-Phase Flow,” PSIG Annual Meeting, Detroit, MI, Oct. 27–28, pp. 27–28.

https://www.onepetro.org/conference-paper/PSIG-8302
Sharma,
Y.
,
Scoggins,
M. W.
,
Shoham,
O.
, and
Brill,
J. P.
, 1986, “
Simulation of Transient Two-Phase Flow in Pipelines,” ASME J. Energy Resour. Technol.,
108(3), pp. 202–206.

[CrossRef]
Kohda,
K.
,
Suzukawa,
Y.
, and
Furukawa,
H.
, 1988, “
Analysis of Transient Gas-Liquid Two-Phase Flow in Pipelines,” ASME J. Energy Resour. Technol.,
110(2), pp. 93–101.

[CrossRef]
Bendiksen,
K. H.
,
Maines,
D.
,
Moe,
R.
, and
Nuland,
S.
, 1991, “
The Dynamic Two-Fluid Model OLGA: Theory and Application,” SPE Prod. Eng.,
6(2), pp. 171–180.

[CrossRef]
Black,
P. S.
,
Daniels,
L. C.
,
Hoyle,
N. C.
, and
Jepson,
W. P.
, 1990, “
Studying Transient Multi-Phase Flow Using the Pipeline Analysis Code (PLAC),” ASME J. Energy Resour. Technol.,
112(1), pp. 25–29.

[CrossRef]
Goldszal,
A.
,
Monsen,
J. I.
,
Danielson,
T. J.
,
Bansal,
K. M.
,
Yang,
Z. L.
,
Johansen,
S. T.
, and
Depay,
G.
, 2007, “
Ledaflow 1D: Simulation Results With Multiphase Gas/Condensate and Oil/Gas Field Data,” 13th International Conference on Multiphase Production Technology, Edinburgh, UK, June 13–15, Paper No. BHR-2007-A2.

https://www.onepetro.org/conferences/BHR/BHR07
Alves,
M. V. C.
,
Waltrich,
P. J.
,
Gessner,
T. R.
,
Falcone,
G.
, and
Barbosa,
J. R.
, 2017, “
Modeling Transient Churn-Annular Flows in a Long Vertical Tube,” Int. J. Multiphase Flow,
89, pp. 399–412.

[CrossRef]
Zhibaedov,
V. D.
,
Lebedeva,
N. A.
,
Osiptsov,
A. A.
, and
Sin'kov,
K. F.
, 2016, “
On the Hyperbolicity of One-Dimensional Models for Transient Two-Phase Flow in a Pipeline,” Fluid Dyn.,
51(1), pp. 56–69.

[CrossRef]
Ishii,
M.
, 1977, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes,” Argonne National Laboratory Argonne, IL, Report No. ANL-77-47.

Malekzadeh,
R.
,
Belfroid,
S. P. C.
, and
Mudde,
R. F.
, 2012, “
Transient Drift Flux Modelling of Severe Slugging in Pipeline-Riser Systems,” Int. J. Multiphase Flow,
46, pp. 32–37.

[CrossRef]
Spesivtsev,
P. E.
,
Kharlashkin,
A. D.
, and
Sinkov,
K. F.
, 2017, “
Study of the Transient Terrain-Induced and Severe Slugging Problems by Use of the Drift-Flux Model,” SPE J.,
22(5), pp. 1570–1584.

[CrossRef]
Choi,
J.
,
Pereyra,
E.
,
Sarica,
C.
,
Lee,
H.
,
Jang,
I. S.
, and
Kang,
J.
, 2013, “
Development of a Fast Transient Simulator for Gas–Liquid Two-Phase Flow in Pipes,” J. Pet. Sci. Eng.,
102, pp. 27–35.

[CrossRef]
Wang,
N.
,
Sun,
B.
,
Wang,
Z.
,
Wang,
J.
, and
Yang,
C.
, 2016, “
Numerical Simulation of Two phase flow in Wellbores by Means of Drift Flux Model and Pressure Based Method,” J. Nat. Gas Sci. Eng.,
36, pp. 811–823.

[CrossRef]
Osiptsov,
A. A.
,
Sin'kov,
K. F.
, and
Spesivtsev,
P. E.
, 2014, “
Justification of the Drift-Flux Model for Two-Phase Flow in a Circular Pipe,” Fluid Dyn.,
49(5), pp. 614–626.

[CrossRef]
Pauchon,
C. L.
, and
Hasmuekh,
D.
, 1994, “
TACITE: A Transient Tool for Multiphase Pipeline and Well Simulation,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 25–28. Paper No. SPE-28545-MS.

https://www.onepetro.org/conference-paper/SPE-28545-MS
Holmås,
K.
, and
Løvli,
A.
, 2011, “
Flowmanager™ Dynamic: A Multiphase Flow Simulator for Online Surveillance, Optimization and Prediction of Subsea Oil and Gas Production,” 15th International Conference on Multiphase Production Technology, Cannes, France, June 15–17, Paper No. BHR-2011-F3.

https://www.onepetro.org/conference-paper/BHR-2011-F3
Krasnopolsky,
B.
,
Starostin,
A.
, and
Osiptsov,
A. A.
, 2016, “
Unified Graph-Based Multi-Fluid Model for Gas–Liquid Pipeline Flows,” Comput. Math. Appl.,
72(5), pp. 1244–1262.

[CrossRef]
Ishii,
M.
, and
Hibiki,
T.
, 2005, Thermo-Fluid Dynamics of Two-Phase Flow,
Springer,
New York.

Masella,
J. M.
,
Tran,
Q. H.
,
Ferre,
D.
, and
Pauchon,
C.
, 1998, “
Transient Simulation of Two-Phase Flows in Pipes,” Int. J. Multiphase Flow,
24(5), pp. 739–755.

[CrossRef]
Spesivtsev,
P.
,
Sinkov,
K.
, and
Osiptsov,
A.
, 2013, “
Comparison of Drift-Flux and Multi-Fluid Approaches to Modeling of Multiphase Flow in Oil and Gas Wells,” WIT Trans. Eng. Sci.,
79, pp. 89–99.

Taitel,
Y.
,
Shoham,
O.
, and
Brill,
J. P.
, 1990, “
Transient Two-Phase Flow in Low Velocity Hilly Terrain Pipelines,” Int. J. Multiphase Flow,
16(1), pp. 69–77.

[CrossRef]
Minami,
K.
, and
Shoham,
O.
, 1994, “
Transient Two-Phase Flow Behavior in Pipelines-Experiment and Modeling,” Int. J. Multiphase Flow,
20(4), pp. 739–752.

[CrossRef]
Aarsnes,
U. J. F.
,
Ambrus,
A.
,
Vajargah,
A. K.
,
Aamo,
O. M.
, and
van Oort,
E.
, 2015, “
A Simplified Gas-Liquid Flow Model for Kick Mitigation and Control During Drilling Operations,” ASME Paper No. DSCC2015-9791.

Aarsnes,
U. J. F.
,
Ambrus,
A.
,
Di Meglio,
F.
,
Vajargah,
A. K.
,
Aamo,
O. M.
, and
van Oort,
E.
, 2016, “
A Simplified Two-Phase Flow Model Using a Quasi-Equilibrium Momentum Balance,” Int. J. Multiphase Flow,
83, pp. 77–85.

[CrossRef]
Kirpalani,
D.
, 2000, “
Novel Signal Processing Approaches for Characterization of Transient Two-Phase Gas-Liquid Flow,” Ph.D. thesis, University of Ottawa, Ottawa, ON.

Fichera,
A.
, and
Pagano,
A.
, 2017, “
A Neural Tool for the Prediction of the Experimental Dynamics of Two-Phase Flows,” Int. J. Heat Technol.,
35(2), pp. 235–242.

[CrossRef]
Zou,
L.
,
Zhao,
H.
, and
Zhang,
H.
, 2017, “
Numerical Uncertainties vs. Model Uncertainties in Two-Phase Flow Simulations,” ANS Annual Meeting, San Francisco, CA, June 11–15, pp. 1255–1258.

Belozerov,
A. A.
,
Romenski,
E. I.
, and
Lebedeva,
N. A.
, 2018, “
Numerical Modeling of Gas-Liquid Compressible Pipe Flow Based on the Theory of Thermodynamically Compatible Systems,” J. Math. Sci.,
228(4), pp. 357–371.

[CrossRef]
Hu,
G.
, and
Kozlowski,
T.
, 2018, “
A Roe-Type Numerical Solver for the Two-Phase Two-Fluid Six-Equation Model With Realistic Equation of State,” Nucl. Eng. Des.,
326, pp. 354–370.

[CrossRef]
Zou,
L.
,
Zhao,
H.
, and
Zhang,
H.
, 2017, “
Application of High-Order Numerical Schemes and Newton-Krylov Method to Two-Phase Drift-Flux Model,” Prog. Nucl. Energy,
100, pp. 427–438.

[CrossRef]
Krasnopolsky,
B. I.
, and
Lukyanov,
A. A.
, 2018, “
A Conservative Fully Implicit Algorithm for Predicting Slug Flows,” J. Comput. Phys.,
355, pp. 597–619.

[CrossRef]
Hassoun,
M. H.
, 1995, Fundamentals of Artificial Neural Networks,
MIT Press,
Cambridge, MA, Chap. 5.

Hornik,
K.
,
Stinchcombe,
M.
, and
White,
H.
, 1990, “
Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks,” Neural Networks,
3(5), pp. 551–560.

[CrossRef]
Chaari,
M.
,
Seibi,
A. C.
,
Ben Hmida,
J.
, and
Fekih,
A.
, 2018, “
An Optimized Artificial Neural Network Unifying Model for Steady-State Liquid Holdup Estimation in Two-Phase Gas–Liquid Flow,” ASME J. Fluids Eng.,
140(10), p. 101301.

[CrossRef]
Kazi,
S. N.
, 1999, An Overview of Heat Transfer Phenomena,
InTech,
London.

Chaari,
M.
,
Ben Hmida,
J.
,
Seibi,
A. C.
, and
Fekih,
A.
, 2017, “
Steady-State Pressure Drop for Two-Phase Flow in Pipelines: An Integrated Genetic Algorithm-Artificial Neural Network Approach,” ASME Paper No. IMECE2017-71854.

Maren,
A. J.
,
Harston,
C. T.
, and
Pap,
R. M.
, 1990, Handbook of Neural Computing Applications,
Academic Press,
San Diego, CA, Chap. 15.

Chaari,
M.
,
Fekih,
A.
,
Seibi,
A. C.
, and
Ben Hmida,
J.
, 2018, “
A Frequency Domain Approach to Improve ANNs Generalization Quality Via Proper Initialization,” Neural Networks,
104, pp. 26–39.

[CrossRef] [PubMed]
Hagan,
M. T.
, and
Menhaj,
M. B.
, 1994, “
Training Feedforward Networks With the Marquardt Algorithm,” IEEE Trans. Neural Networks,
5(6), pp. 989–993.

[CrossRef]
Back,
T.
, and
Hoffmeister,
F.
, 1991, “
Extended Selection Mechanisms in Genetic Algorithms,” Fourth International Conference on Genetic Algorithms, San Diego, CA, July 13–16, pp. 92–99.

Blickle,
T.
, and
Thiele,
L.
, 1995, “
A Comparison of Selection Schemes Used in Genetic Algorithms,” Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Report No. 11.

Hong,
T. P.
,
Wang,
H. S.
,
Lin,
W. Y.
, and
Lee,
W. Y.
, 2002, “
Evolution of Appropriate Crossover and Mutation Operators in a Genetic Process,” Appl. Intell.,
16(1), pp. 7–17.

[CrossRef]
Beggs,
H. D.
, and
Brill,
J. P.
, 1973, “
A Study of Two-Phase Flow in Inclined Pipes,” J. Pet. Technol.,
25(5), pp. 607–617.

[CrossRef]
Petalas,
N.
, and
Aziz,
K.
, 2000, “
A Mechanistic Model for Multiphase Flow in Pipes,” J. Can. Pet. Technol.,
39(6), pp. 43–55.

[CrossRef]
Meziou,
A.
,
Chaari,
M.
,
Franchek,
M.
,
Borji,
R.
,
Grigoriadis,
K.
, and
Tafreshi,
R.
, 2016, “
Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines,” ASME J. Dyn. Syst. Meas. Control,
138(10), p. 101008.

[CrossRef]
Colebrook,
C. F.
, 1939, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between Smooth and Rough Pipe Laws,” J. Inst. Civ. Eng.,
11(4), pp. 133–156.

[CrossRef]
Brown,
F. T.
, 1962, “
The Transient Response of Fluid Lines,” ASME J. Basic Eng.,
84(4), pp. 547–553.

[CrossRef]
Ravindran,
V. K.
, and
Manning,
J. R.
, 1973, “
The Frequency Response of Pneumatic Lines With Branching,” ASME J. Dyn. Syst. Meas. Control,
95(2), pp. 194–196.

[CrossRef]
Omrani,
A.
,
Franchek,
M. A.
, and
Grigoriadis,
K.
, 2018, “
Transmission Line Modeling of Inclined Compressible Fluid Flows,” ASME J. Dyn. Syst. Meas. Control,
140, p. 011001.

[CrossRef]
Hsue,
C. Y. Y.
, and
Hullender,
D. A.
, 1983, “
Modal Approximation for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines,” Winter Annual Meeting, Fluid Transmission Line Dynamics, Boston, MA, Nov. 13–18, pp. 51–77.

Oldenberger,
R.
, and
Goodson,
R. E.
, 1964, “
Simplification of Hydraulic Line Dynamics by Use of Infinite Products,” ASME J. Basic Eng.,
86(1), pp. 1–8.

[CrossRef]