Milgram,
J. H.
, 1969, “
The Motion of a Fluid in a Cylindrical Container With a Free Surface Following Vertical Impact,” J. Fluid Mech.,
37(3), pp. 435–448.

[CrossRef]
Minowa,
C.
,
Ogawa,
N.
,
Harada,
I.
, and
Ma,
D. C.
, 1994, “
Sloshing Roof Impact Tests of a Rectangular Tank,” Argonne National Laboratory, Lemont, IL, Report No. ANL/RE/CP-82360.

https://inis.iaea.org/search/search.aspx?orig_q=RN:25069948
Minowa,
C.
, 1997, “
Sloshing Impact of a Rectangular Water Tank (Water Tank Damage Caused by the Kobe Earthquake),” Nippon Kikai Gakkai Ronbunshu, C-Hen,
63(612), pp. 2643–2649.

Ibrahim,
R. A.
, 2005, Liquid Sloshing Dynamics: Theory and Applications,
Cambridge University Press,
New York.

Faltinsen,
O. M.
, and
Timokha,
A. N.
, 2009, Sloshing,
Cambridge University Press,
Cambridge, UK.

Yi,
W.
, and
Natsiavas,
S.
, 1992, “
Seismic Response of Unanchored Fluid-Filled Tanks Using Finite Elements,” ASME J. Pressure Vessel Technol.,
114(1), pp. 74–79.

[CrossRef]
Wu,
G. X.
,
Ma,
Q. W.
, and
Eatock Taylor,
R.
, 1998, “
Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method,” Appl. Ocean Res.,
20(6), pp. 337–355.

[CrossRef]
Mitra,
S.
,
Upadhyay,
P. P.
, and
Sinhamahapatra,
K. P.
, 2008, “
Slosh Dynamics of Inviscid Fluids in Two‐Dimensional Tanks of Various Geometry Using Finite Element Method,” Int. J. Numer. Methods Fluids,
56(9), pp. 1625–1651.

[CrossRef]
Chen,
B.-F.
, and
Nokes,
R.
, 2005, “
Time-Independent Finite Difference Analysis of Fully Non-Linear and Viscous Fluid Sloshing in a Rectangular Tank,” J. Comput. Phys.,
209(1), pp. 47–81.

[CrossRef]
Chen,
B.-F.
, and
Chiang,
H.-W.
, 2000, “
Complete Two-Dimensional Analysis of Sea-Wave-Induced Fully Non-Linear Sloshing Fluid in a Rigid Floating Tank,” Ocean Eng.,
27(9), pp. 953–977.

[CrossRef]
Dodge,
F. T.
, 2000, The New Dynamic Behavior of Liquids in Moving Containers,
Southwest Research Institute,
San Antonio, TX, pp. 111–116.

Kim,
Y.
, 2001, “
Numerical Simulation of Sloshing Flows With Impact Load,” Appl. Ocean Res.,
23(1), pp. 53–62.

[CrossRef]
Akyildiz,
H.
, and
Serdar Çelebi,
M.
, 2001, “
Numerical Computation of Pressure in a Rigid Rectangular Tank Due to Large Amplitude Liquid Sloshing,” Turk. J. Eng. Environ. Sci.,
25(6), pp. 659–674

Eswaran,
M.
,
Saha,
U. K.
, and
Maity,
D.
, 2009, “
Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation,” Comput. Struct.,
87(3–4), pp. 198–205.

[CrossRef]
aus der Wiesche,
S.
, 2008, “
Sloshing Dynamics of a Viscous Liquid in a Spinning Horizontal Cylindrical Tank,” Aerosp. Sci. Technol.,
12(6), pp. 448–456.

[CrossRef]
Veldman,
A. E.
,
Gerrits,
J.
,
Luppes,
R.
,
Helder,
J. A.
, and
Vreeburg,
J. P. B.
, 2007, “
The Numerical Simulation of Liquid Sloshing on Board Spacecraft,” J. Comput. Phys.,
224(1), pp. 82–99.

[CrossRef]
Fang,
Z.-Y.
,
Duan,
M.-Y.
, and
Zhu,
R.-Q.
, 2007, “
Numerical Simulation of Liquid Sloshing in a Liquid Tank Based on Level-Set Method,” J. Ship Mech.,
11(1), pp. 62–67.

http://en.cnki.com.cn/Article_en/CJFDTOTAL-CBLX200701007.htm
Arai,
M.
,
Cheng,
L.-Y.
, and
Inoue,
Y.
, 1995, “
A Computing Method for the Analysis of Water Impact of Arbitrary Shaped Bodies (2nd Report),” J. Soc. Nav. Archit. Jpn.,
1995(177), pp. 91–99.

[CrossRef]
Arai,
M.
,
Cheng,
L.-Y.
, and
Inoue,
Y.
, 1992, “
3D Numerical Simulation of Impact Load Due to Liquid Cargo Sloshing,” J. Soc. Nav. Archit. Jpn.,
1992(171), pp. 177–184.

[CrossRef]
Rhee,
S. H.
, 2005, “
Unstructured Grid Based Reynolds-Averaged Navier-Stokes Method for Liquid Tank Sloshing,” ASME J. Fluids Eng.,
127(3), pp. 572–582.

[CrossRef]
Sames,
P. C.
,
Marcouly,
D.
, and
Schellin,
T. E.
, 2002, “
Sloshing in Rectangular and Cylindrical Tanks,” J. Ship Res.,
46(3), pp. 186–200.

https://www.ingentaconnect.com/content/sname/jsr/2002/00000046/00000003/art00004
Price,
W. G.
, and
Chen,
Y. G.
, 2006, “
A Simulation of Free Surface Waves for Incompressible Two‐Phase Flows Using a Curvilinear Level Set Formulation,” Int. J. Numer. Methods Fluids,
51(3), pp. 305–330.

[CrossRef]
Chen,
Y. G.
,
Djidjeli,
K.
, and
Price,
W. G.
, 2009, “
Numerical Simulation of Liquid Sloshing Phenomena in Partially Filled Containers,” Comput. Fluids,
38(4), pp. 830–842.

[CrossRef]
Battaglia,
L.
,
Cruchaga,
M.
,
Storti,
M.
,
D'Elía,
J.
,
Núñez Aedo,
J.
, and
Reinoso,
R.
, 2018, “
Numerical Modelling of 3D Sloshing Experiments in Rectangular Tanks,” Appl. Math. Modell.,
59, pp. 357–378.

[CrossRef]
Shao,
S.
, and
Lo,
E. Y.
, 2003, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface,” Adv. Water Resour.,
26(7), pp. 787–800.

[CrossRef]
Colagrossi,
A.
, and
Landrini,
M.
, 2003, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics,” J. Comput. Phys.,
191(2), pp. 448–475.

[CrossRef]
Souto-Iglesias,
A.
,
Delorme,
L.
,
Pérez-Rojas,
L.
, and
Abril-Pérez,
S.
, 2006, “
Liquid Moment Amplitude Assessment in Sloshing Type Problems With Smooth Particle Hydrodynamics,” Ocean Eng.,
33(11–12), pp. 1462–1484.

[CrossRef]
Fang,
J.
,
Parriaux,
A.
,
Rentschler,
M.
, and
Ancey,
C.
, 2009, “
Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids,” Appl. Numer. Math.,
59(2), pp. 251–271.

[CrossRef]
Koh,
C. G.
,
Luo,
M.
,
Gao,
M.
, and
Bai,
W.
, 2013, “
Modelling of Liquid Sloshing With Constrained Floating Baffle,” Comput. Struct.,
122, pp. 270–279.

[CrossRef]
Chen,
Z.
,
Zong,
Z.
,
Li,
H. T.
, and
Li,
J.
, 2013, “
An Investigation Into the Pressure on Solid Walls in 2D Sloshing Using SPH Method,” Ocean Eng.,
59, pp. 129–141.

[CrossRef]
Cao Cao,
X. Y.
,
Ming,
F. R.
, and
Zhang,
A. M.
, 2014, “
Sloshing in a Rectangular Tank Based on SPH Simulation,” Appl. Ocean Res.,
47, pp. 241–254.

[CrossRef]
Li,
J. G.
,
Hamamoto,
Y.
,
Liu,
Y.
, and
Zhang,
X.
, 2014, “
Sloshing Impact Simulation With Material Point Method and Its Experimental Validations,” Comput. Fluids,
103, pp. 86–99.

[CrossRef]
You,
S.
, and
Bathe,
K.-J.
, 2015, “
Transient Solution of 3D Free Surface Flows Using Large Time Steps,” Comput. Struct.,
158, pp. 346–354.

[CrossRef]
Tadashi,
W.
, 2016, “
Numerical Simulation of Liquid Sloshing Using Arbitrary Lagrangian-Eulerian Level Set Method,” Int. J. Multiphys.,
5(4), pp. 339–352.

Zuhal,
O.
,
Fahjan,
Y. M.
, and
Souli,
M.
, 2017, “
Numerical Simulation of Liquid Sloshing in Tanks,” Computational Methods in Earthquake Engineering,
Springer,
Cham, Switzerland, pp. 49–79.

Zhang,
Y. L.
,
Tang,
Z. Y.
, and
Wan,
D. C.
, 2016, “
MPS-FEM Coupled Method for Interaction Between Sloshing Flow and Elastic Structure in Rolling Tanks,” Seventh International Conference on Computational Methods (ICCM), Berkeley, CA, Aug. 1–4, pp. 1–4.

http://dcwan.sjtu.edu.cn/userfiles/1493-6106-1-PB.pdf
Zhang,
Y.
,
Chen,
X.
, and
Wan,
D.
, 2017, “
Sloshing Flows in an Elastic Tank With High Filling Liquid by MPS-FEM Coupled Method,” 27th International Ocean and Polar Engineering Conference, San Francisco, CA, June 25–30, Paper No. ISOPE-I-17-040.

https://www.onepetro.org/conference-paper/ISOPE-I-17-040
Hejazi,
F. S.
,
Akhavan,
M. K.
, and
Mohammadi
, 2019, “
Investigation on Sloshing Response of Water Rectangular Tanks Under Horizontal and Vertical Near Fault Seismic Excitations,” Soil Dyn. Earthquake Eng.,
116, pp. 637–653.

[CrossRef]
Zhou,
J. G.
, 2004, Lattice Boltzmann Methods for Shallow Water Flows, Vol.
4,
Springer,
Berlin.

SIMULIA, 2018, “
PowerFLOW,” SIMULIA, Waltham, MA.

ANSYS, 2018, “
CFX,” ANSYS^{®} Academic Research Mechanical, Release 18.1, ANSYS, Canonsburg, PA.

ANSYS, 2018, “
Fluent,” ANSYS^{®} Academic Research Mechanical, Release 18.1,” ANSYS, Canonsburg, PA.

Next Limit Technologies, 2013, “
XFlow,” Next Limit Technologies, Madrid, Spain.

He,
X.
, and
Luo,
L.-S.
, 1997, “
A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E,
55(6), p. R6333.

[CrossRef]
Owen,
D. R. J.
,
Leonardi,
C. R.
, and
Feng,
Y. T.
, 2011, “
An Efficient Framework for Fluid–Structure Interaction Using the Lattice Boltzmann Method and Immersed Moving Boundaries,” Int. J. Numer. Methods Eng.,
87(1–5), pp. 66–95.

[CrossRef]
Nourgaliev,
R. R.
,
Dinh,
T.-N.
,
Theofanous,
T. G.
, and
Joseph,
D.
, 2003, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications,” Int. J. Multiphase Flow,
29(1), pp. 117–169.

[CrossRef]
Martys,
N. S.
, and
Chen,
H.
, 1996, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method,” Phys. Rev. E,
53(1), p. 743.

[CrossRef]
Luan,
H.-B.
,
Xu,
H.
,
Chen,
L.
,
Sun,
D.-L.
,
He,
Y.-L.
, and
Tao,
W.-Q.
, 2011, “
Evaluation of the Coupling Scheme of FVM and LBM for Fluid Flows Around Complex Geometries,” Int. J. Heat Mass Transfer,
54(9–10), pp. 1975–1985.

[CrossRef]
Sterling,
J. D.
, and
Chen,
S.
, 1996, “
Stability Analysis of Lattice Boltzmann Methods,” J. Comput. Phys.,
123(1), pp. 196–206.

[CrossRef]
Junk,
M.
,
Klar,
A.
, and
Luo,
L.-S.
, 2005, “
Asymptotic Analysis of the Lattice Boltzmann Equation,” J. Comput. Phys.,
210(2), pp. 676–704.

[CrossRef]
Bouzidi,
M.
,
Firdaouss,
M.
, and
Lallemand,
P.
, 2001, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries,” Phys. Fluids,
13(11), pp. 3452–3459.

[CrossRef]
Rothman,
D. H.
, and
Keller,
J. M.
, 1988, “
Immiscible Cellular-Automaton Fluids,” J. Stat. Phys.,
52(3–4), pp. 1119–1127.

[CrossRef]
Shan,
X.
, and
Doolen,
G.
, 1995, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction,” J. Stat. Phys.,
81(1–2), pp. 379–393.

[CrossRef]
Enright,
D.
,
Fedkiw,
R.
,
Ferziger,
J.
, and
Mitchell,
I.
, 2002, “
A Hybrid Particle Level Set Method for Improved Interface Capturing,” J. Comput. Phys.,
183(1), pp. 83–116.

[CrossRef]
Ginzburg,
I.
, 2002, “
A Free-Surface Lattice Boltzmann Method for Modelling the Filling of Expanding Cavities by Bingham Fluids,” Philos. Trans. R. Soc., A,
360(1792), pp. 453–466.

[CrossRef]
Krafczyk,
M.
,
Lehmann,
P.
,
Filippova,
O.
,
Hänel,
D.
, and
Lantermann,
U.
, 2000, “
Lattice Boltzmann Simulations of Complex Multiphase Flows,” Multifield Problems,
Springer,
Berlin, pp. 50–57.

Janssen,
C.
, and
Krafczyk,
M.
, 2010, “
A Lattice Boltzmann Approach for Free-Surface-Flow Simulations on Non-Uniform Block-Structured Grids,” Comput. Math. Appl.,
59(7), pp. 2215–2235.

[CrossRef]
Körner,
C.
, and
Singer,
R. F.
, 1999, “
Numerical Simulation of Foam Formation and Evolution With Modified Cellular Automata,” Metal Foams and Porous Metal Structures, MIT Publication, Bermen, Germany.

Kleefsman,
K. M. T.
,
Fekken,
G.
,
Veldman,
A. E. P.
,
Iwanowski,
B.
, and
Buchner,
B.
, 2005, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems,” J. Comput. Phys.,
206(1), pp. 363–393.

[CrossRef]
Akkerman,
I.
,
Bazilevs,
Y.
,
Kees,
C. E.
, and
Farthing,
M. W.
, 2011, “
Isogeometric Analysis of Free-Surface Flow,” J. Comput. Phys.,
230(11), pp. 4137–4152.

[CrossRef]
Xie,
B.
,
Jin,
P.
, and
Xiao,
F.
, 2017, “
An Unstructured-Grid Numerical Model for Interfacial Multiphase Fluids Based on Multi-Moment Finite Volume Formulation and THINC Method,” Int. J. Multiphase Flow,
89, pp. 375–398.

[CrossRef]SPHERIC, 2005, “
SPHERIC, SPH European Research Interest Community, SIG, Test-Case 2, 3D Dam Breaking, Release 1.1, March 2006, by Réza ISSA and Damien VIOLEAU, Electricité De France, Laboratoire National d'Hydraulique et Environnement,” accessed June 3, 2019,

http://spheric-sph.org/tests/test-2
Danesh,
P. N.
,
Kabiri,
M.
, and
Goudarzi,
M. A.
, 2016, “
Experimental Investigation of Sloshing Wave Effects on a Fixed Roof Rectangular Storage Tank,” J. Seismol. Earthquake Eng.,
18(1), pp. 23–32.

http://jsee.ir/index.php/jsee/article/view/429
Jaiswal,
O. R.
,
Rai,
D. C.
, and
Jain,
S. K.
, 2007, “
Review of Seismic Codes on Liquid-Containing Tanks,” Earthquake Spectra,
23(1), pp. 239–260.

[CrossRef]
Malhotra,
P. K.
, 2005, “
Sloshing Loads in Liquid-Storage Tanks With Insufficient Freeboard,” Earthquake Spectra,
21(4), pp. 1185–1192.

[CrossRef]