Abstract

The tip-leakage flow has detrimental effects on the performance of compressors. In this paper the effects of gap height and incoming casing boundary layer thickness are analyzed. Velocity and total pressure measurements are carried out in a plane behind the trailing edge of an isolated fixed blade. The total pressure loss is decomposed in a vortex loss and a wake loss. It appears that the increase of total pressure losses with the gap height comes essentially from the vortex part. This observation motivated the development of a model based on an analogy with a jet in crossflow to estimate the tip-leakage vortex circulation. The predictions of this model are consistent with the experimental data for gaps smaller than 4% of chord.

This content is only available via PDF.
You do not currently have access to this content.