This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios.

Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation. Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that, the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass of the aircraft. It is demonstrated that, accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.

This content is only available via PDF.
You do not currently have access to this content.