In this study, a computational examination of Taylor bubbles was performed for gas/non-Newtonian fluid two-phase flows developed in a minichannel T-junction mixer with a hydraulic diameter of 1 mm. The investigations employed three separate aqueous xanthan gum solutions at concentrations of 0.05, 0.1 and 0.15 w/w, which are referred to as non-Newtonian (yield power-law) fluids. The effective concentration of the xanthan gum solutions and superficial velocity of the inlet liquid phase on the length, velocity, and shape of the Taylor bubbles was studied using the ANSYS FLUENT 19 software package. The simulation results show an increase in bubble velocity with increasing film thickness, particularly in solutions of higher viscosity XG-0.15%. Furthermore, bubble lengths decreased as the xanthan gum concentrations increased, but bubble shapes underwent alterations when the concentrations increased. Another interesting result of the tests shows that when the liquid inlet velocity increases, bubble lengths decrease during lower liquid superficial velocity, whereas during higher velocities, they change only slightly after increases in concentration. Finally, with increasing XG concentration, the liquid film thickness around the bubble increased. The results show good agreement with correlations after modifying a capillary number (Ca*) for non-Newtonian liquids in all cases.

This content is only available via PDF.
You do not currently have access to this content.