Abstract
For mechanical systems that undergo intermittent motion, the usual formulation of the equations of motion is not valid over the periods of the discontinuity, and a procedure for balancing the momenta of the system is often performed. A canonical form of the equations of motion is used here as the differential equations of motion. A set of momentum balance-impulse equations are derived in terms of the system total momenta by explicitly integrating the canonical equations. The method shows to be stable while numerically integrating the canonical equations, and efficient while solving the momentum balance-impulse equations. Examples are provided to illustrate the validity of the method.
Volume Subject Area:
14th Design Automation Conference
This content is only available via PDF.
Copyright © 1988 by The American Society of Mechanical Engineers
You do not currently have access to this content.