Cracking of a fluid filled subsurface crack is studied by the distributed dislocation technique within the framework of two-dimensional linear elastic fracture mechanics. The opening volume of the horizontal Griffith crack is fully occupied by an incompressible fluid. In the presence of friction, a moving Hertzian line contact load is applied at the surface of the half plane. The induced hydrostatic fluid pressure inside the crack is calculated through an iterative scheme with the restriction that due to the fluid incompressibility there is no change of the crack-opening volume (COV). The stress intensity factors at the tips of the fluid filled crack are analyzed and the effective quadrature formulae are given for the evaluation of the COV. A hypothesis is introduced that the crack propagation is initiated when the elastic strain energy release rate reaches the critical fracture toughness and is arrested when the energy release rate is below the arrest toughness. Based on the energy criterion, predictions will be attempted for determining the load position where the crack propagation/kink commences as well as the growth increment of the branch crack before it is arrested. A step-by-step crack path is constructed for various loading conditions.
Skip Nav Destination
ASME/STLE 2007 International Joint Tribology Conference
October 22–24, 2007
San Diego, California, USA
Conference Sponsors:
- Tribology Division
ISBN:
0-7918-4810-8
PROCEEDINGS PAPER
Behavior of a Fluid Filled Subsurface Crack Under Moving Hertzian Loading
Xiaoqing Jin,
Xiaoqing Jin
Northwestern University, Evanston, IL
Search for other works by this author on:
Leon M. Keer,
Leon M. Keer
Northwestern University, Evanston, IL
Search for other works by this author on:
Qian Wang
Qian Wang
Northwestern University, Evanston, IL
Search for other works by this author on:
Xiaoqing Jin
Northwestern University, Evanston, IL
Leon M. Keer
Northwestern University, Evanston, IL
Qian Wang
Northwestern University, Evanston, IL
Paper No:
IJTC2007-44449, pp. 629-631; 3 pages
Published Online:
March 23, 2009
Citation
Jin, X, Keer, LM, & Wang, Q. "Behavior of a Fluid Filled Subsurface Crack Under Moving Hertzian Loading." Proceedings of the ASME/STLE 2007 International Joint Tribology Conference. ASME/STLE 2007 International Joint Tribology Conference, Parts A and B. San Diego, California, USA. October 22–24, 2007. pp. 629-631. ASME. https://doi.org/10.1115/IJTC2007-44449
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Effect of Galling on Metal Fracture in Cup Ironing Process
J. Tribol (October,1989)
Thermoelastic Finite Element Analysis of Subsurface Cracking Due to Sliding Surface Traction
J. Eng. Mater. Technol (January,1997)
Dynamic Steady-State Stress Field in a Web During Slitting
J. Appl. Mech (March,2005)
Related Chapters
Applications of Elastic-Plastic Fracture Mechanics in Section XI, ASME Code Evaluations
Online Companion Guide to the ASME Boiler and Pressure Vessel Codes
Introductory Information
The Stress Analysis of Cracks Handbook, Third Edition
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies